Marching Cubes

Sara McMains ME 290-R

Marching Cubes

Motivation

Visualization for medical aps

Input

- Regular grid of points
- Density values at each point

Data acquisition

MRI (Magnetic Resonance Imaging)
Excitation of water molecules
CT scan (Computer Tomography)
Absorption of x-rays
Ultrasound
Backscatter strength

Goal

Display "iso-surface"

- Surface of constant density
 - Assumption : sampling from a continuous such surface
- Medical visualization
 - Bone, flesh, organ densities differ
 - Operator selects desired density

Display

Outputs triangles

Graphics hardware optimized for triangles

Today, everyone has graphics cards

Back in the "dark ages" had to do it in software

Surface normal for each vertex

Improve rendered appearance via Gouraud shading

Gouraud Shading

A simple, effective computer graphics hack Make low-detail surfaces appear smooth

Standard Flat Shading

material + lighting + viewing angle -> color

Same color for whole triangle

Phong Shading

Pretend surface normal varies across triangle

- Implementation
 - Store a surface normal at each vertex
 - Interpolate them to calculate each pixel color

Gouraud Shading

Simplification of Phong shading

Interpolate vertex colors instead of normals

Gouraud Shading

Back to Marching Cubes

Basic idea:

- Look at one "cube" of 8 samples at a time
- Determine if each corner inside or outside volume
 - Density above threshold => 0 label
 - Density below threshold => 1 label
- Pattern of labels tells topology of intersection

Calculation of topology and geometry separated

Cases

256 (2⁸) cases total

- Build a look-up table
 - Index : ordered 8-bits of in/out labels from cube corners
 - Output: which edges intersected, triangles formed

Cases

Only 15 patterns

Cases 0 Only 15 patterns 5 Use symmetry

Cases Only 15 patterns • Use symmetry

Δ

Geometry calculations

Edge intersection positions

Linear interpolation of density values at corners

Geometry calculations

Edge intersection positions

Linear interpolation of density values at corners

Geometry calculations

Edge intersection positions

Linear interpolation of density values at corners

Geometry Calculations

Vertex normals

- Want to set to normal to iso-surface
- Gradient direction = normal direction for isosurfaces
- Calculate gradient at each corner
 - Look at 6 neighbors
- Interpolate to edge intersections

Efficiency

Internal cube edges shared

- 12 edges/cube
- 4 cubes/edge

3 new edges per internal cube

Booleans

Boolean evaluation also uses in/out labeling (and on)

- Implement Booleans on cube index
- Use truth tables to combine 0, 255, "in-between"
- For in-between/in-between, clip triangles

Memory Usage

Just need four slices of data in memory No problem for normal data sets Small memory footprint good indicator of possible parallelism

Topology Problems

E.g. holes in output

Topology Problems

E.g. holes in output

Ambiguity of configurations

2D Example

Fixes

Simple approaches

- Consider adjacent cubes
 - Helps some, not all cases
- Divide into Tetrahedra
 - Make consistent with adjacent elements
 - Correctness not guaranteed

Fixes

Interpolation approaches calculate additional vertices or values

- Add center point & tetrahedralize
- Subdivision
 - Down to pixel resolution, e.g.
 - Dividing Cubes [Cline et al. 1988]
- Fit higher order curves
 - Curve orientation disambiguates

