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ABSTRACT
For molding and castingprocesses,geometriesthat have

undercut-freepartingdirections(UFPDs)arepreferredfor man-
ufacturing. However, existingapproacheseithercannotidentify
all UFPDsor cannotrun at interactivespeeds(thebestexhaus-
tivealgorithm,unimplemented,runsat O(n4) timetheoretically).
Our proposedfeature-basedapproach avoidstestingthe whole
Gaussiansphereof potentialdirectionsby�r stef�ciently identify
all UFPDsfor individual featuressuch asextrudedandrevolved
features,thussigni�cantly reducingtestspaceandrunningtime.
In this paper, we describea fast algorithm to �nd all UFPDs
for solidsof revolution.Thealgorithmis basedonanalyzingthe
constructing2D generator pro�les, building on our previousre-
sultsfor 2-moldabilityanalysisof polygons.Therunningtimeis
O(n), where n is the geometriccomplexity of the 2D generator
pro�le . For parts containingmultiple solids of revolution, the
setof possibleUFPDscan besigni�cantly reducedbasedupon
an analysisof each such feature, ef�ciently identifyingmanyas
non-2-moldableor reducingthesearch spacefor exhaustiveal-
gorithmsthat �nd all UFPDs.

1 INTRODUCTION
In molding or castingmanufacturingprocesses,themolten

materialis shapedin ahollow mold. After thematerialsolidi�es,

� Addressall correspondenceto thisauthor.

(a) (b)

Figure 1. (a) Mold for a simple 2D part; (b) an orientation of the same

part with undercuts.

thepart is ejectedout of themold. Simplereusablemoldscon-
sist of two rigid halvesthat move in oppositedirectionsduring
themoldclosingandopeningoperations,to permitthepartto be
extracted.The directionof motion of the mold halvesis called
theparting direction. The two mold halvesmeetat the parting
surface(seeFig. 1(a)),which maybeplanaror non-planar. The
part geometryis said to be 2-moldable(monotone)in a direc-
tion ~d if themold halvesforming it canbe translatedto in�nity
along~d and� ~d, respectively, without collision with the interior
of thepart.Thepartshown in Fig.1(a)is 2-moldablein theverti-
cal direction;thesamepartwith a differentorientationshown in
Fig.1(b) is not2-moldablein theverticaldirection.Surfacesthat
preventthemold from releasingthepartarecalledundercuts.

In the presenceof undercuts,the mold may requireextra
movablesections,which are insertedinto the mold beforethe
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moltenmaterialis shaped,to form particularfeaturesthat can-
not beformedusingonly two mold halves.Theseundercutsnot
only increasethemoldcostbut alsoshortenthemold life. There-
fore, all elsebeingequal,geometrieswith undercut-freeparting
directions(UFPDs)arepreferred.

Sinceapproximately80%of injectionmoldingmanufactur-
ing cost typically becomes�x ed in the designstage,according
to our intervieweesin theinjection-moldedpartdesignindustry,
and the �e xibility to make designchangesrapidly diminishes
later in the designcycle, it is vital that designersareprovided
early feedbackon their design. Our researchconcentrateson
�nding all UFPDsat interactive speedsduring the early design
stageto help designersmaintaina geometrywith at leastone
UFPD.

2 RELATED WORK
Whethera given part geometryallows a UFPD hasbeen

studiedby many researchers.Previous researchcanbe divided
into two approaches:heuristicor exhaustive.

2.1 Heuristic Appr oaches
Heuristicalgorithmsonly testeda limited numberof poten-

tial partingdirectionsfor 2-moldability, suchasthethreeprinci-
ple axes[1,2], theboundingbox axes[3], or thenormaldirec-
tions[4,5]. If aUFPDis in thetestset,theapproachwill �nd it;
otherwise,theapproachwill not �nd it.

Otherresearchersusedconcavity featuresor graph-basedal-
gorithms. The concavity featurealgorithmsare basedon �rst
performinga regularizedsubtractionof theobjectfrom its con-
vex hull, thenidentifying potentialundercuts,which arecalled
“pockets.” Each“pocket” is a setof connectedsurfacesthatbe-
long to theoriginalobjectbut not to theconvex hull [6–12]. The
optimalpartingdirectionsarechosenby differentcriteriasuchas
thenumberof undercutsanddraft angles.This approach,how-
ever, cannotidentify directionsasUFPDswhenportionsof asin-
gle “pocket” canonly beformedby differenthalvesof themold,
which unfortunatelyis not uncommonin industry. Graph-based
algorithmsrecognizedpotentialundercutfeaturesusingbound-
ary representationgraphs[13–17]. This approachworksfor de-
tectingdepressionor protrusionundercuts.However, it breaks
down for complex features,wheredepressionsandprotrusions
interactwith eachother.

2.2 Exhaustive Appr oaches
Exhaustive approachesto �nding if any UFPDsexist for a

given geometryhave beenpresentedin both two andthreedi-
mensions.RappaportandRosenbloomgave anO(n) time algo-
rithm to determineif a2D polygonwith n verticesis 2-moldable
in arbitrary(notnecessarilyopposite)removal directions,andan
O(nlogn) time algorithmfor oppositeremoval directions[18].

In our previous work, we developedan O(n) time algorithmto
�nd all UFPDsfor a2D polygonboundedby straightline and/or
curvededges[19].

Boseand Bremnerpresentedalgorithmsto determinethe
existenceof a UFPD for a genus-zeropolyhedron[20]. Their
algorithmsonly �nd UFPDswith planarpartingsurfaces;UF-
PDs with non-planarparting surfacesare ignored. Ahn et al.
presentedanexhaustivealgorithmto �nd all thecombinatorially
distinctUFPDsfor a3D (faceted)polyhedronin timeO(n5 logn)
andamoreef�cient but morecomplicatedalgorithmthatrunsin
time O(n4). They divided thewhole Gaussiansphereinto con-
nectedregions formed by an arrangementof greatcircles and
greatcircular arcs. Within eachregion, the polyhedronhasthe
same2-moldability for all directions;henceonly onedirection
needsto be testedin eachregion, accomplishedby testingthe
verticesof thearrangement.In their paper, they alsoprovedthat
the O(n4) time complexity is optimal in the worst caseby pre-
sentingan examplewith W(n4) combinatoriallydistinct parting
directions. However, in practice,dueto their algorithm's com-
plexity, their implementationinsteadrevertedto testingheuris-
tically chosendirectionsbasedon input edgeorientationsand
additionalrandomlychosentest directions. Elber et al. gave
anexactsolutionfor a modelboundedby NURBSsurfaces,but
it is restrictedto a completelysmoothboundarythat is C3 ev-
erywhere[21]. Khardekaret al. developeda programmable-
graphics-hardwareacceleratedalgorithmto testthecombinatori-
ally distinctUFPDsfor a triangulatedpolyhedron.Their imple-
mentationcangraphicallydisplay the undercutfor a particular
partingdirectionin lineartime with respectto thenumberof tri-
angularfacesin the solid model. To �nd a UFPD, they tested
thefacenormaldirectionsandtheintersectionsof sphericalcon-
vex hulls [22], eachof which boundsan inaccessibleregion on
theGaussianspherecorrespondingto directionsin which a pair
of facesmayoccludeeachother[23]. Although�nding a single
UFPDis greatlyacceleratedusingtheir algorithm,either�nding
all UFPDsor de�nitely statingthatno UFPDsexist takesO(n5)
time.

In summary, heuristicapproachescannotalways �nd a di-
rectionthat is indeeda UFPD,andamongthe existing exhaus-
tive approachesfor general3D polyhedra,the best theoretical
time complexity is O(n4), which is not interactive for anything
beyond relatively simplegeometries.To take advantageof the
completenessof theexhaustivealgorithmsandmake themprac-
tically useful,speedingup the runningtime is thusthe focusof
ourresearch.In thenext section,wewill giveanoverview of our
proposedfeature-basedapproachto �nding all UFPDs.

3 FEATURE-BASED APPROACH TO FINDING ALL UF-
PDS
Currently most CAD systemsuse feature-baseddesign,

whichmaintainsadesignhistoryfor latereditingandreconstruc-
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tion. The overall geometryis obtainedby performingBoolean
operationson a treeof features,commonlyincludingextrusion,
revolution, sweepandloft features.Thesefeaturesareusually
constructedby �rst drawing 2D contours,whichwecall 2D gen-
eratorpro�les, and then performing3D operationson the 2D
contours.

Weobservethatfor unionsof features,adirectionis aUFPD
for theoverall geometryonly if it is a UFPD for every individ-
ual feature.Basedon this observation,we have proposeda new
feature-basedapproachto �nding all UFPDsby �rst �nding aset
of UFPDsfor eachfeatureandthentestingonly thedirectionsin
the intersectionof all suchsetsusingan exhaustive algorithm.
Using the proposedapproach,the setof possibleUFPDsfor a
part containingindividual featurescanbe reducedfor eachfea-
ture addedto the designtree,ef�ciently identifying many parts
that have no UFPDsandreducingthe searchspacefor exhaus-
tivealgorithmsthat�nd all UFPDs.Moreover, thefeature-based
analysiscan be implementedincrementally. PotentialUFPDs
for eachindividual featureareonly computedonce. Whenever
a new featureis added,the previously testedpotentialUFPDs
by theexhaustivealgorithmis re-classi�edonly againstthenew
featurebeforerunningtheexhaustivealgorithmagain,saving re-
computationtimewhentheoverallgeometryisupdated.Wehave
presentedouralgorithm�nding all UFPDsfor extrusionsin [24].
In this paper, we show how to �nd all UFPDsfor solidsof revo-
lution.

4 ASSUMPTIONS AND BACKGROUND
4.1 Assumptions

In this paper, we studysolidsof revolution thatareformed
by rotating 2D generatorpro�les 360� aroundtheir coplanar
axes. We assumethat the 2D generatorpro�les are polygons
composedof only straightline segments(so the crosssections
for theresultingsolidsof revolutionareboundedby straightlines
and/orhyperboliccurves). The boundaryof the 2D generator
pro�le doesnotcrossbut maytouchtheaxisof revolution,which
is thecasein CAD systemssuchasSolidWorks.Without lossof
generality, we assumethatboththe2D generatorpro�le andthe
axisof revolution lie on thex-zplaneandthattheaxisof revolu-
tion coincideswith thezaxis.Whenthe2D generatorpro�le has
holes,the result is trivial sincethe solid of revolution contains
voids;no directionsareUFPDs.Thuswe only considerthecase
wherethe 2D generatorpro�le is a simplepolygonthat hasno
holes.We alsoassumethatthe2D generatorpro�le is non-self-
intersecting.

For apolygon,possiblycurvedif it is theboundaryof across
sectionfor the solid of revolution, we usethe right-handrule
conventionthat the edgesof thepolygonareorientedin sucha
way thattheinteriorof thepolygonlieson theleft whenmoving
alongthedirectededges— that is, theboundaryof thepolygon
is orientedcounterclockwise.Theedgenormalsareunit vectors

pointingtowardstheexteriorof thepolygon.
To representall directionsin 2D Euclideanspace,we use

a Gaussiancircle; eachdirection in 2D can be representedby
a point on theGaussiancircle by normalizingthedirectionto a
unit vectorandplacingits tail at theorigin. Similarly, we usea
Gaussiansphereto representall possibledirectionsin 3D. The
+ z directionis mappedto thenorthpoleandthe� z directionis
mappedto thesouthpole.

4.2 UFPDs for 2D Curved Polygons
This sectionsummarizesthe 2-moldability analysisfor 2D

curvedpolygonspresentedin our previous work [19], which is
usedin ouralgorithmfor �nding all UFPDsfor solidsof revolu-
tion. For our2D algorithm,we introducedadatastructurecalled
thenormalgraph that capturestheedgenormalsandtheir con-
nectivity, givena possiblycurvedpolygon. By traveling around
thepolygoncounterclockwise,startingfrom any edge,theedge
normalsaremappedonto the Gaussiancircle. They arecalled
normal points. Eachstraightedgecorrespondsto one unique
normalpoint. Eachsimple(i.e., G1-continuousbut without any
in�ection points) curve correspondsto two normal points, de-
noting normalsat the startpoint andendpoint. Normal points
maycoincidewith eachother. Two sequentiallymappednormal
points(not necessarilyadjacenton thenormalgraph)represent-
ing differentedgesareconnectedby anarclessthan180� around
theGaussiancircle. Thetwo connectednormalpointsmayrep-
resenttwo adjacentstraightedges,onestraightedgeandthestart
pointof the(next) curvededge,theendpoint of thecurvededge
andthe(next) straightedge,theendpointof thecurvededgeand
thestartpoint of the(next) curvededge,or thelastmappednor-
malpoint andthe�rst mappednormalpoint. Two normalpoints
representingthestartpoint andtheendpoint of thesamesimple
curve arealsoconnectedby an arc, which is orientedcounter-
clockwiseif thecurvatureof thecurve is positive andclockwise
if the curvatureis negative (the curvatureis positive if its cen-
ter lies on the left whenmoving alongthe curve, negative if its
centerlies on theright). Thearcsconnectingthenormalpoints
arecallednormalarcs. Normalarcstogetherwith normalpoints
form the normal graph. An examplenormalgraphis shown in
Fig. 2(b).

Eachnormalarcconnectstwo normalpointsandeachnor-
mal point is spannedby two arcs. If the two arcsspanningthe
samenormalpointhaveoppositeorientations(onecounterclock-
wiseandtheotherclockwise),thenormalpoint is calleda turn-
ing point. Thenormalgraphcanbesimpli�ed to asummarynor-
mal graph in orderto optimizethespeedwhencheckingthe2-
moldabilityof thepolygon.OntheGaussiancircle,therearetwo
kindsof points.For somepoints,theraystartingfrom thecenter
of theGaussiancircle,passingthroughthepoint,andpointingto
in�nity intersectsthe normalgraphonly once,shown by a thin
black line on the summarynormalgraphin Fig. 2(c); for other

3 Copyright c 2007by ASME



(a) (b) (c) (d) (e)

Figure 2. (a) A curved polygon; (b) normal graph (normal points and normal arcs expanded out from Gaussian circle for visualization purposes); (c)

summary normal graph; (d) Gaussian circle is divided into regions; (e) Result in (d) is rotated 90� CCW (UFPDs in thin green, non-UFPDs in thick blue).

points,therayintersectsthenormalgraphmorethanonce,shown
by a thick redline in Fig. 2(c). Intersectionsat turningpointsdo
not count.Theclassi�cationof all pointson theGaussiancircle
is shown on thesummarynormalgraph(Fig. 2(c)).

In [19], we proved that if andonly if a line L that passes
throughthe centerof the Gaussiancircle intersectsthe normal
graphexactly twice, thedirectionperpendicularto L is a UFPD.
Thusin the �gure, the two intersectionsof L with thesummary
normalgraph,if it correspondsto a UFPD,will bothhave to be
with thethin blackportioncorrespondingto asingleintersection
with the original normalgraph(seeFig. 2(c)). Lines whereei-
therintersectionis with theportionshown in thick redmeansthe
directionperpendicularto L is a non-UFPD.Therefore,we can
divide theGaussiancircle into regionswithin whichL intersects
thesummarynormalgraphatexactly two thin blackpoints(such
regionsaredenotedby a thin greenline in Fig. 2(d) andmaybe
a singlepoint), andregionswithin which L intersectsthe sum-
marynormalgraphat oneor morethick redpoints(suchregions
aredenotedby a thick blue line in Fig. 2(d)). The regionsare
boundedby turning pointsor their re�ections throughthe cen-
ter of thecircle. The resultis thenrotatedaroundtheGaussian
circle 90� to obtain the correspondingUFPDs. Thin greenre-
gionscorrespondto UFPDsandthick blueregionscorrespondto
non-UFPDs(Fig. 2(e)).

5 FINDING ALL UFPDS FOR SOLIDS OF REVOLU-
TION
Forageneralpolyhedron,adirection~d isaUFPDif andonly

if every line parallelto ~d intersectstheboundaryof thepolyhe-
dronat mosttwice, wherean intersectionmaybe eithera point
or a line segment[12,26].

Previous researchfor �nding all UFPDsfor a solid of rev-
olution assumedthatall UFPDscanbeobtainedby takingeach
edgeof concavity featureson its 2D generatorpro�le and�nd-
ing the intersectionof associatedhemi-circleson the Gaussian

(a) (b) (c)

Figure 3. (a) A solid of revolution with 2D generator pro�le shown; (b)

UFPDs parallel to the plane of the 2D generator pro�le , in thin green,

assumed by [25]; (c) A line l parallel to ~d intersects the boundary of a

cross section of the solid four times, which makes ~d a non-UFPD.

circle,whereeachedgede�nesa hemi-circlethat is boundedby
aline parallelto theedgethroughthecirclecenterandthatlieson
thesideof theline wheretheedgenormalpoints.This intersec-
tion de�nesUFPDsfor the2D generatorpro�le; it is thenrotated
aroundthepoleaxison theGaussiansphere[25]. An exampleis
shown in Fig. 3(a),for whichall proposedUFPDsparallelto the
planeof the2D generatorpro�le areshown in Fig. 3(b) by thin
greenlines,with ~d beinganexampleUFPD.However, checking
a hyperbolicconic sectionC parallel to the 2D generatorpro-
�le shows that thereis a line l parallel to ~d that intersectsthe
boundaryof C, andhencetheboundaryof the solid, morethan
two times. Therefore,~d is not actuallya UFPD. Next we will
describehow we cancorrectly �nd all UFPDsfor any solid of
revolution.

In [24], we provedthata direction~d is a UFPDfor a given
polyhedronif andonly if ~d is a UFPDfor all thecrosssections
in a family parallelto ~d, wherea family of crosssectionsarede-
�ned asan in�nite numberof crosssectionsthat areparallel to
eachother. The particularorientationof a family of crosssec-
tionsparallelto ~d canbeselectedarbitrarily. However, sinceit is
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(a) (b)

Figure 4. (a) A solid of revolution with 2D generator pro�le shown; (b) A

family of cross sections parallel to the axis of revolution and a test direction

that lies in the plane perpendicular to the 2D generator pro�le (only �v e

cross sections are shown).

enoughto testonly onefamily of crosssectionsparallelto ~d, for
solidsof revolution, we usevertical crosssectionsthat arepar-
allel to theaxisof revolution (z axis) andthe testdirection(see
Fig. 4).

Furthermore,the2-moldabilityof asolidof revolutionis cir-
cularly symmetricaroundtheaxisof revolution. If a directionis
a UFPD,all directionshaving thesamelatitudeon theGaussian
sphereareUFPDsandvice versafor non-UFPDs.Therefore,to
testthe2-moldabilityof solidsof revolution,weonly needto test
all thedirectionsfor 2-moldability thatareparallelto oneverti-
cal plane. Without lossof generality, we choosethe x-z plane
andtest the family of crosssectionsthat areparallel to the x-z
planefor 2-moldability, sinceadirectionparallelto thex-zplane
is a UFPDif andonly if it is a UFPDfor all crosssectionsin the
family. After all UFPDsparallelto thex-zplaneareobtained,the
resultis revolvedaroundthepoleaxison theGaussiansphereto
form all theUFPDsfor thesolid of revolution (for an example,
seeFig.5). Therestof thepaperwill focusonhow to �nd all UF-
PDsthatareparallelto thex-zplane.Unlessotherwisespeci�ed,
thetestdirectionandthecrosssectionsconsideredareparallelto
thex-zplanefor theremainderof thepaper.

Notethat theboundaryof a crosssectionparallelto but not
in the x-z planefor solidsof revolution is composedof hyper-
bolic segments.To analyzethecrosssection,we�rst show some
propertiesof hyperbolicconicsections.

5.1 Hyperbolic Conic Sections
We assumethat the axis of a right circular coneis coinci-

dentwith the z-axis. Whenintersectedby a vertical planepar-
allel to thex-z plane,theconeproducesa hyperboliccurve (see
Fig. 6(a)). If theconeis trimmedat thebottomby a horizontal
planeparallelto thex-y plane,thehyperboliccurve mayalsobe
trimmed(seeFig. 6(b)). Theasymptotesof all hyperbolicconic
sectionsthatareparallelto thex-z planeareprojectedto thesil-

(a) (b) (c)

Figure 5. (a) A solid of revolution with its 2D generator pro�le outlined;

(b) All directions parallel to the x-z plane with UFPDs in light green and

non-UFPDs in dark blue; (c) Rotation of the result obtained in (b) on the

Gaussian sphere.

(a) (b)

Figure 6. (a) conic section is a hyperbola; (b) hyperbola is trimmed by a

horizontal plane.

houettelinesof theconeon thex-zplane.
For a(possiblytrimmed)cone,thefollowing theoremholds.

Thefull proof is deferredto the full versionof thepaperdueto
spacerestrictions.

Theorem 1. Given a direction ~d that is parallel to the x-z
plane, if the smaller angle betweenthe z axis and ~d is larger
than theanglebetweenthez axisand theasymptotesof thehy-
perbolicconic sections,we can always�nd a line parallel to ~d
such that it intersectsa hyperbolicconicsection(andhencethe
conic surface)twice; otherwise, a line parallel to ~d intersects
anyhyperbolicconicsectionat mostonce.

5.2 2-Moldability of Solids of Revolution
In this section,we show that the 2-moldability of solidsof

revolution is constrainedby the edgesof the 2D generatorpro-
�les, which lie on thex-zplane.

Givena 2D generatorpro�le for thesolid of revolution,de-
noteEin = f eing thesetof edgeson the2D generatorpro�le that
havenormaldirectionspointinginwardto theaxisof revolution,
ein not on the axis of revolution. For eachein, denoteqin the
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Figure 7. Line l intersects the solid of revolution at least four times.

smalleranglebetweenein andthez axis. We have thefollowing
lemma.

Lemma 2. If a direction~d, parallel to thex-zplane, is a UFPD
for thesolid of revolution,denotingq thesmalleranglebetween
~d andthezaxis,wehaveq � min(qin).

Proof. For any edgeein 2 Ein, its revolution aroundthez axis is
a (possiblytrimmed)cone. Without lossof generality, suppose
thenormaldirectionof ein pointsupward.Wewill provethatany
direction~d with q > qin is notaUFPDfor thesolidof revolution.

From Theorem1, for any direction ~d with q > qin, there
alwaysexists a line l parallelto ~d intersectingtwice with a hy-
perbolicconic sectionof the coneformedby ein (Fig. 7). The
line l goesupward into the interior of thesolid at oneintersec-
tion A andexits thesolid alongthesamedirection. It alsogoes
downwardinto the interior of thesolid at anotherintersectionB
andexits the solid alongthe samedirection. With at leasttwo
entrancesandtwo exits, l intersectsthesolid at leastfour times.
Therefore,~d is nota UFPDfor thesolidof revolution.

In otherwords,if ~d is aUFPDfor thesolidof revolution,we
musthaveq � qin for all ein, thatis, q � min(qin).

Sinceall UFPDsmust have q � qin for any ein having a
normal directionpointing inward to the axis of revolution, we
saythatUFPDsareboundedby therevolutionof ein. For edges
Eout = f eoutg with normaldirectionspointingawayfrom theaxis
of revolution,a similar statementholds:

Lemma 3. Givena UFPD ~d for thesolid of revolutionandan
edgeeout on the2D generator pro�le , if oneor bothendpointsof
eout are concave, ~d is either in a region of theGaussiansphere
boundedby therevolutionof eout or is a horizontaldirection.

Proof. To prove this lemma,we have threecases:only theend
point of directededgeeout is concave,only thestartpointof eout
is concave, or both the startpoint andthe endpoint of eout are
concave. Sincethe proofsfor thesethreecasesaresimilar, we
only providetheproof for the�rst casehereto savespace.With-
out lossof generality, weassumethatthenormaldirectionof eout
pointsupward.

With illustrationin Fig. 8(a),weanalyzetheedgee1, whose
end point is concave. Call the polygon containinge1, on the
boundaryof thecentralcrosssection,P. (Thiscrosssectioncon-
sistsof thegeneratorpro�le andits re�ection, so it maycontain
oneor two disconnectedpolygons.)Thelocalnormalgraphate1
for P is illustratedin Fig. 8(b), with normalarcsconnectingn0,
n1 andn2, thenormalsof edgese0, e1 ande2, respectively.

Whentheintersectingplanemovesalittle furtherawayfrom
the x-z plane,the boundaryof the crosssectioncontainsa pair
of symmetrichyperbolicsegmentscorrespondingto eachedge
on the2D generatorpro�le. Denotethecurvedpolygonon this
boundary, containinga setof connectedhyperbolicsegments,as
P0. The local normalgraphfor P0 hasnormalarcsconnecting
n0e, n1s, n1e andn2s (seeFig. 8(b)), wherenis andnie denote,
respectively, the normalsat the start point and end point of a
hyperbolicsegmenton the coneformed by ei . Projectedonto
thex-z plane,oneof theasymptotesfor thehyperbolicsegment
coincideswith ei . It canbeshown from theequationsof thehy-
perbolicsegmentandthe line e1 thatn1s andn1e will alwaysbe
closerto the+ z directionon thenormalgraphthann1, with n1e
evencloserthann1s. Sincetheendpoint of e1 is concave,n1e is
closerto the+ z directionon thenormalgraphthann2s. There-
fore, the normalpoint n1e is a turning point. On the summary
normalgraph,the arc betweenn1e andn1s or n2s, whichever is
closerto thez axis,will correspondto directionswith morethan
oneintersectionsbetweentheray startingfrom thecenterof the
Gaussiancircle and the normal graph. This arc, after rotating
90� counterclockwise,correspondsto a setof non-UFPDs(re-
call theexampleshown in Fig. 2). Note that thepositionof n1e
changescontinuouslyfrom n1 (at thecentralplane)to in�nitely
closeto the+ z direction(whenthehyperbolicconicsectionon
the coneformedby e2 shrinksuntil it disappears)as the inter-
sectingplanemovesaway from the x-z plane. The whole arc
on thesummarynormalgraphbetweenn1 andthe+ z direction
thereforecorrespondsto non-UFPDsafter rotation,not includ-
ing the+ z direction(seeFig. 8(c)). Sinceall crosssectionsare
symmetricrelative to the z axis, the re�ection of this arc about
the z axis also correspondsto non-UFPDs,after rotation. The
remainingpartof thesummarynormalgraphstaysunclassi�ed.
In asummary, theUFPDsareboundedby therevolutionof e1.

Theproof is similar for theothertwo cases.

In this section,we have shown how to pre-identifya setof
non-UFPDsusingLemma2 andLemma3. The directionsnot
in this setarecandidateUFPDs. In thenext section,we further
classify thesecandidateUFPDs(asUFPDsor non-UFPDs)by
analyzingthreedifferentcases.

5.3 Types of Solids of Revolution
Wecanclassifysolidsof revolutioninto threecategories(see

Fig. 9), basedon thepropertiesof theclosestelement(s)(vertex
or edge)onthe2D generatorpro�le to theaxisof revolution. The
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(a) TypeI (b) TypeII (c) TypeIII

Figure 9. Types of revolution. Type I: single closest element is an edge or a vertex that lies on the axis of revolution; Type II: single closest element is an

edge or a vertex that does not lie on the axis of revolution; Type III: multiple closest elements that may or may not lie on the axis of revolution.

(a) (b) (c)

Figure 8. P: boundary of the central cross section; P': boundary of a

non-central cross section. (a) Edge e1 points away from the axis of revo-

lution, with a concave end point; (b) local normal graphs at e1 (dark for P,

light for P0). Part of the summary normal graph is classi�ed as the non-

UFPD region; (c) Identi�ed non-UFPD sets, in thick blue, not including

horizontal directions (note 90� rotation from normal graph).

�rst two typeshaveonly oneclosestelement.A typeIII solidof
revolutionhasmultipleclosestelements.

5.3.1 Type I. For typeI revolutions,theclosestelement
on the 2D generatorpro�le to the axis of revolution is a single
edgeor vertex thatlieson theaxis(seeFig. 9(a)).

When the closestelementis an edge,the boundaryof the
centralcrosssectionintersectstheaxisexactly twice at the two
endpointsof the closestelementand containsa single faceted
polygon. Any othercrosssectionparallel to the x-z planecon-
tains a single curved polygon. For eachof the crosssections
parallelto thex-zplane,we canthusbuild a normalgraphfor its
boundary.

Whentheclosestelement(edge)hasanin�nitesimal length,
it degeneratesto a vertex. We cantreattheboundaryof thecen-
tral crosssectionasa simplepolygonwith two verticeshaving

the samecoordinatevalues. The topology of the boundaryof
thecentralcrosssectionis thesameaswhentheclosestelement
is an edgewith an in�nitesimal length. Sincethenormalgraph
only capturesthetopologyof polygons,thenormalgraphfor the
boundaryof the centralcrosssectionis not affectedwhen we
treat the vertex (closestelement)asan edgewith in�nitesimal
length. Crosssectionsotherthanthe centralcrosssectionhave
onecurvedboundaryeach.Thenormalgraphis uniquefor every
crosssection.

For theremainderof thissection,wewill thusonly dealwith
thegeneralizedcase.That is, theclosestelementis an edgeon
theaxisof revolution,with a �nite or in�nitesimal length.

Supposewehavethenormalgraphsfor all thecrosssections
parallelto thex-z plane.Thenwe analyzethesenormalgraphs,
�nd asetof UFPDsfor eachandthencalculatetheir intersection,
which formsall theUFPDsparallelto thex-z planefor thetype
I solid of revolution. It turns out that this intersectionalways
equalsthesetof UFPDsfor theboundarypolygonof thecentral
crosssection. This meansthat the centralcrosssectiondeter-
minesthe 2-moldability of the type I solid of revolution (after
thecandidateUFPDsarepre-identi�ed). Theproof is provided
asfollows.

Lemma 4. Assumingthat a direction ~d, parallel to the x-z
plane, is a candidateUFPD for a typeI solid of revolution, it
is indeeda UFPD if andonly if it is alsoa UFPD for thebound-
ary polygonP of thecentral crosssection.

Proof. =) Supposethat ~d werea UFPDfor thesolidof revolu-
tion but notaUFPDfor P. Thereexistsa line thatis parallelto ~d
andintersectsP morethantwo times. Hencethis line intersects
therevolvedsurfacemorethantwo times. Therefore,~d is not a
UFPDfor thesolid of revolution.

( = Suppose~d is a candidateUFPDfor thesolid of revolu-
tion andis a UFPDfor P. We will show that ~d is alsoa UFPD
for theboundarypolygonP0 of any othercrosssection.Thus ~d
is a UFPDfor all crosssectionsof thesolid andhencea UFPD
for thesolid of revolution.
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(a) (b)

Figure 10. (a) Both endpoints of edge e1 of the generator pro�le P are

convex, a non-central cross section with boundary P0 is shaded; (b) local

normal graphs at e1 (dark for P, light for P0).

(a) (b) (c)

Figure 11. (a) Start point is convex and end point is concave for edge

e1; (b) Original local normal graphs at e1 (dark for P, light for P0); (c)

equivalent local normal graphs of (b).

Wheneachedgeei on P correspondsto a straightor hyper-
bolic segmenton P0 (that is, the numberof edgeson P equals
the numberof edgeson P0), accordingto the convexity of the
endpointsof ei , we havefour cases.

1. Both thestartpoint andtheendpoint of ei areconvex.
2. Thestartpointof ei is convex andtheendpoint is concave.
3. Thestartpointof ei is concaveandtheendpoint is convex.
4. Both thestartpoint andtheendpoint of ei areconcave.

For the �rst casewhen both endpointsof ei are convex,
the local normal graphsat e1 for both P and P0 are shown in
Fig. 10(b). It is obviousthat theUFPDsfor P andP0 areequiv-
alent since their summarynormal graphsare identical locally
aroundthenormalpointn1.

For thesecondcase(Fig. 11(a)),the local normalgraphsat
e1 for P andP0differ only in thepre-identi�ednon-UFPDregion
(Fig. 11(b), boundedby the symmetricarc aroundthe z axis),
which is derivedaccordingto Section5.2. Sincedirectionscor-
respondingto this regionarealreadyclassi�edasnon-UFPDs,~d

(a) (b)

Figure 12. The boundary of the cross section has fewer edges as it

moves away from the axis of revolution.

(a) (b)

Figure 13. (a) Central cross section when the closest element is a single

edge; (b) central cross section when the closest element is a single vertex

(for purposes of visualization, the two coinciding vertices on the axis of

revolution are pulled apart slightly).

is not in this region. Thusthis portion of thenormalgraphcan
be ignoredandsimpli�ed by moving the turningpoint n1e onto
theboundaryof this region. The equivalentlocal normalgraph
at e1 for P0, shown in Fig. 11(c), is thus the sameas the local
normalgraphfor P. Therefore,giventhat ~d is a UFPDfor P and
acandidateUFPDfor thesolid, ~d is alsoa UFPDfor P0.

Case3 andcase4 canbeexplainedusingthesamelogic.
Whenthe numberof edgesof P0 is smallerthanthat of P,

thenormalgraphcanbeanalyzedsimilarly. But therearefewer
normalarcson thenormalgraphfor P0 thanfor P sincethehy-
perbolicsegmentscorrespondingto someedgeson the2D gen-
eratorpro�le will disappearastheintersectingplanemovescon-
tinuouslyaway from the x-z plane(seeFig. 12). However, the
samelogic still applies.Therefore,we canusetheboundaryof
the centralcrosssectionaloneto further classify the candidate
UFPDs.

The boundarypolygon of the centralcrosssectioncan be
constructeddirectly from the2D generatorpro�le by taking the
boundaryof theunionof theinteriorsof the2D generatorpro�le
andits re�ection, connectivity takenasshown in Fig.13(b)when
theclosestelementis a singlevertex.
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(a) (b) (c)

Figure 14. (a) An example of type II solid of revolution; (b) central cross

section; (c) a cross section which is s� eaway from the x-zplane (line l
is parallel to the test direction and intersects the cross section more than

two times).

5.3.2 Type II. For type II revolutions, the closestele-
menton the 2D generatorpro�le to the axis of revolution is a
singleedgeor vertex thatdoesnot lie on theaxis(seeFig. 9(b)).

When the closestelementis an edgee, the only possible
UFPDsarethe+ z and� z directions.This canbeeasilyproved.
Supposethe distancebetweene andthe axis of revolution is s.
Considertheverticalintersectingplanethatiss� eawayfromthe
x-zplane,e> 0. Whene is smallenough,for any givendirection
~d (exceptthe+ z and� z directions),therealwaysexistsa line l
parallelto ~d intersectingtheboundaryof thecrosssectionmore
thantwo times(seeFig. 14).

We now analyzetheonly remainingcandidateUFPDs,i.e.,
the + z and� z directions,andshow how they canbe testedby
converting the geometryto a type I revolution with equivalent
UFPDs.

SupposeV is a point on e, not necessarilyoneof its end-
points. Call its projectiononto the axis of revolution O (see
Fig. 15(a)). As we prove below, insertingtwo oppositelyori-
entededgesVO andOV into the 2D generatorpro�le doesnot
affect the2-moldabilityof thesolid of revolution in the+ z and
� zdirections.Theadditionaltwo edgesarerevolvedto form two
disks,with normalspointingin the+ zand� zdirections,respec-
tively. Sincee is theclosestelementon the2D generatorpro�le
to the axis of revolution, thesetwo disks are neitheroccluded
by nor occludeanypartof theoriginal solid of revolution,when
viewedfrom the+ z and� z directions,respectively. Hencethey
do not add new undercutsor changeexisting undercuts. That
is, the2-moldabilityof thesolid of revolution in the+ z and� z
directionsis not changed.Directionsotherthanthe + z and� z
directionsremainnon-UFPDs.

If we weld the two new edgesat their openvertices,the
2D generatorpro�le becomesthat for a type I revolution. As
is provedin theabove section,theboundaryof thecentralcross
sectioncan be easily constructedand uniquely determinesthe
2-moldability of the solid of revolution (seeFig. 15(a)). Note

(a) (b) (c)

Figure 16. Type III solids of revolution. (a) Closest elements lie on the

axis of revolution; (b) closest elements does not lie on the axis of revolu-

tion; (c) a cross section, which is s+ e away from the x-z plane, has a

hole.

thatdirectionsotherthanthe+ zand� zdirectionsareobviously
non-UFPDsfor theconstructedcentralcrosssection.

Whentheclosestelementis a vertex V, supposetheprojec-
tion of V on the axis is O (seeFig. 15(b)). Similarly, adding
two edgesVO andOV (seeFig. 15(b)) to the2D generatorpro-
�le doesnot changethe 2-moldability of the solid of revolu-
tion. That is, up-facets(respectively, down-facets)remainup-
facets(respectively, down-facets),no new undercutsareadded,
andno existing undercutsareaffected,relative to a givencandi-
dateUFPD(thepre-identi�ednon-UFPDsremainnon-UFPDs).
Thuswe againconvert thegeometryto a type I revolution with
equivalentUFPDs.

5.3.3 Type III. For type III solids of revolution, there
aremultiple closestelements(edgesor vertices)on the2D gen-
eratorpro�le to theaxisof revolution.

Whentheclosestelementslie on theaxis,no directionsare
UFPDsfor the solid of revolution sinceoneor moreholesare
presenton thecentralcrosssection(seeFig. 16(a)for anexam-
ple). No directionsareUFPDsfor thecentralcrosssectionand
hencefor thesolidof revolution.

Whenthesemultiple closestelementsdo not lie on theaxis
of revolution,supposethedistanceof theclosestelementsto the
axis of revolution is s. Considerthe intersectingplanethat is
s+ eawayfrom thex-zplane,e> 0. Whene is not too large,the
crosssectionhasaholein themiddle(seeFig.16(c)).Therefore,
no directionsareUFPDsfor this crosssectionandhencefor the
solidof revolution.

In summary, typeIII solidsof revolutionarenot2-moldable
in any direction.

5.4 Summar y and Algorithm
From the above discussion,we can concludethat the 2-

moldability analysison a solid of revolution canbeobtainedby
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(a) (b)

Figure 15. Type II solid of revolution. (a) Modi�ed central cross section when the closest element is a single edge; (b) modi�ed central cross section when

the closest element is a single vertex. For purposes of visualization, coinciding edges are pulled apart slightly.

Input : Pg, 2D generatorpro�le on thex-zplane;
z, axisof revolution.

Output : Setof UFPDsF parallelto thex-zplane.

TravelingaroundPg to �nd all theclosestelementsEc.
if sizeof(Ec) > 1 then

Solidof revolution is typeIII.
ReturnF = null.

else
Solidof revolution is typeI or II.
F 1 = 90� .
foreachedgeei onPg, if normalof ei pointstoward
zor at leastoneendpointof ei is concaveand
normalof ei pointsawayfromzdo

q = anglebetweenei andzaxis.
F 1 = min(F 1;q).

end
ConstructpolygonP accordingto Fig. 13 (typeI)
or Fig. 15 (typeII).
Findall UFPDsF 2 for P using2D algorithm.
if noedgeonPg hasa normalpointingtoward z
then

ReturnF = ([90� � F 1;90� + F 1]
S

[270� �
F 1;270� + F 1])

T
F 2.

else
ReturnF = ([90� � F 1;90� + F 1]

S
[270� �

F 1;270� + F 1]
S

[0� ;0� ]
S

[180� ;180� ])
T

F 2.
end

end

Algorithm 1: FindingUFPDsForRevolution()

performinganalysison its 2D generatorpro�le only. Thealgo-
rithm is summarizedin theAlgorithm 1 box.

In our previouswork, we provedthat �nding all UFPDsfor
a polygonP takesO(n) time [19]. Extractingall theclosestele-
mentsand�nding theminimumF 1 alsotakesO(n) time. There-
fore, the overall algorithmfor �nding all UFPDsfor a solid of

revolutionhasa timecomplexity of O(n).

6 CONCLUSIONS
Finding all UFPDs at interactive speedsgives designers

maximum�e xibility choosinga parting direction early in the
designprocess,whenredesigncost is the lowest. Existing ap-
proacheseithercannot�nd all UFPDs(heuristicapproaches)or
cannotrun at interactive speedsfor anything beyond relatively
simplepart geometries(exhaustive approaches).We have pro-
posedanew feature-basedapproachto reducethetimeto �nd all
UFPDs,takingadvantageof feature-basedCAD systems.Since
UFPDsareconstrainedby eachindividualfeaturecomposingthe
geometry, only whenadirectionis aUFPDfor all features,is it a
potentialUFPDfor theoverall geometry. Thusonly thesedirec-
tionsneedto betestedusinganexhaustivealgorithm;otherwise,
thedirectionis directly classi�edasa non-UFPDfor theoverall
geometry.

In this paper, we showedhow to �nd all UFPDsfor a solid
of revolutionvia analyzingits 2D generatorpro�le in O(n) time.
TheseUFPDswerepreviously found correctlyonly by exhaus-
tive algorithmsfor arbitrarypartsthat took at leastO(n4) time.
SincerevolvedfeaturesoftengreatlyconstrainthepotentialUF-
PDs for the overall geometry, the test spaceon the Gaussian
spherebecomessigni�cantly smaller than the entire Gaussian
spherethatpreviously hadto betested.If no directionsareUF-
PDsfor all revolvedfeatures,thepartcanbeimmediatelyiden-
ti�ed as non-2-moldablewithout further testing; in this case,
designerscan either go back to redesignthe part geometryor
choosean optimal partingdirectionfor a mold with morethan
two piecesbasedon othercriteriasuchasthenumberof under-
cutsor undercutvolume.

Somepeoplearguethatdesignersusuallyusedirectionsthat
arealignedwith or normalto revolution axisdirectionsaspart-
ing directionswhenrevolvedfeaturesexist. While this is a fact
in currentpractice,it is becausethesearethedirectionswhose2-
moldability a humandesignercanmosteasilyevaluate.Our al-
gorithm automaticallyprovidesdesignerswith morealternative
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(a)

Figure 17. An example containing a revolved feature, with the 2D gen-

erator pro�le highlighted. The only UFPD for the example geometry is ~d,

which is neither the revolution axis direction nor one of its normal direc-

tions.

UFPDsto choosefrom. With candidatepartingdirectionspre-
de�ned asrevolution axis directionsor their normaldirections,
either the designinnovation andalternativesare limited or the
manufacturingcostrisesbecauseof theundercuts.Fig.17shows
anexamplecontaininga revolvedfeature.Thegeometrywould
causeundercutsif thepartingdirectionis de�ned astherevolu-
tion axisdirectionor oneof its normaldirections.Ouralgorithm
�nds theUFPD,which enablesthepart to bemanufacturedat a
lowercost.

Whetherundercutsexist is not theonly criteriawhenchoos-
ing anoptimalpartingdirectionfor a complex geometry. Other
factors,suchasthecomplexity of thepartingsurface,alsoplayan
importantrole[1,27]. GenerallyUFPDsarethepreferredparting
directions. But designersandmanufacturersmay choosenon-
UFPDswith planarpartingsurfacesinsteadif all UFPDsrequire
complex non-planarpartingsurfaces. Our future work aimsto
de�ne optimalpartingdirectionsfor anarbitrarygeometrybased
on multiple criteria aswell asexploring 2-moldability analysis
onmorecomplex featuretypessuchassweepsandlofts.
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