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ABSTRACT

For molding and casting processesgeometriesthat have
undercut-freeparting directions(UFPDs)are preferredfor man-
ufacturing However, existing appmoacdeseither cannotidentify
all UFPDsor cannotrun at interactivespeedgthe bestexhaus-
tivealgorithm,unimplementedunsat O(n*) timetheoetically).
Our proposedfeatule-basedapproach avoidstestingthe whole
Gaussiarsphee of potentialdirectionsby r stefciently identify
all UFPDsfor individual featuressud asextrudedandrevolved
featues,thussigni cantly reducingtestspaceandrunningtime
In this paper we describea fast algorithmto nd all UFPDs
for solidsof revolution. Thealgorithmis basedon analyzingthe
constructing2D geneaator pro les, building on our previousre-
sultsfor 2-moldabilityanalysisof polygons.Therunningtimeis
O(n), whee n is the geometriccompleity of the 2D geneator
pro le. For parts containingmultiple solids of revolution, the
setof possibleUFPDs can be signi cantly reducedbasedupon
an analysisof eac sud feature, efciently identifyingmanyas
non-2-moldableor reducingthe seach spacefor exhaustiveal-
gorithmsthat nd all UFPDs.

1 INTRODUCTION
In molding or castingmanuficturingprocesseshe molten
materialis shapedn ahollow mold. After thematerialsolidi es,
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Figure 1. (a) Mold for a simple 2D part; (b) an orientation of the same
part with undercuts.

the partis ejectedout of the mold. Simplereusablenoldscon-
sistof two rigid halvesthat move in oppositedirectionsduring
themold closingandopeningoperationsto permitthe partto be
extracted. The direction of motion of the mold halvesis called
the parting direction The two mold halvesmeetat the parting
surface(seeFig. 1(a)), which may be planaror non-planar The
part geometryis saidto be 2-moldable(monotone)n a direc-
tion d if the mold halvesforming it canbe translatedo in nity
alongd and @, respectiely, without collision with theinterior
of thepart. Thepartshovn in Fig. 1(a)is 2-moldabldn theverti-
cal direction;the samepartwith a differentorientationshavn in
Fig. 1(b)is not2-moldablen theverticaldirection.Surfaceshat
preventthe mold from releasinghe partarecalledundercuts

In the presenceof undercutsthe mold may require extra
movable sections,which are insertedinto the mold beforethe
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molten materialis shapedto form particularfeaturesthat can-
not beformedusingonly two mold halves. Theseundercutsot
only increasghemold costbut alsoshorterthemoldlife. There-
fore, all elsebeingequal,geometriewith undercut-fregoarting
directions(UFPDs)arepreferred.

Sinceapproximately80% of injection molding manufctur
ing costtypically becomesx edin the designstage,according
to ourintervieweesin theinjection-moldedbartdesignindustry,
andthe e xibility to make designchangesrapidly diminishes
later in the designcycle, it is vital that designersare provided
early feedbackon their design. Our researchconcentrate®n
nding all UFPDsat interactve speedsduring the early design
stageto help designeramaintaina geometrywith at leastone
UFPD.

2 RELATED WORK

Whethera given part geometryallows a UFPD has been
studiedby mary researchersPrevious researclcanbe divided
into two approachesheuristicor exhaustve.

2.1 Heuristic Approaches

Heuristicalgorithmsonly testeda limited numberof poten-
tial partingdirectionsfor 2-moldability, suchasthethreeprinci-
ple axes[1, 2], the boundingbox axes[3], or the normaldirec-
tions[4,5]. If aUFPDis in thetestset,theapproactwill nd it;
otherwisetheapproactwill not nd it.

Otherresearchergsedconcaity featureor graph-basedl-
gorithms. The concaity featurealgorithmsare basedon rst
performinga regularizedsubtractionof the objectfrom its con-
vex hull, thenidentifying potentialundercutswhich are called
“pockets’ Each“pocket” is a setof connectedsurfacesthatbe-
long to theoriginal objectbut notto the corvex hull [6-12]. The
optimalpartingdirectionsarechoserby differentcriteriasuchas
the numberof undercutsanddraft angles. This approachhow-
ever, cannotidentify directionsasUFPDswhenportionsof asin-
gle “pocket” canonly beformedby differenthalvesof themold,
which unfortunatelyis not uncommornin industry Graph-based
algorithmsrecognizedpotentialundercutfeaturesusingbound-
ary representatiographs[13-17]. This approachworksfor de-
tecting depressioror protrusionundercuts.However, it breaks
down for complex features wheredepressiongand protrusions
interactwith eachother

2.2 Exhaustive Approaches

Exhaustie approacheso nding if any UFPDsexist for a
given geometryhave beenpresentedn both two andthreedi-
mensions.Rappaporand Rosenbloongave an O(n) time algo-
rithm to determindf a 2D polygonwith n verticesis 2-moldable
in arbitrary(not necessarilypppositeyemoval directions,andan
O(nlogn) time algorithmfor oppositeremoval directions[18].

In our previous work, we developedan O(n) time algorithmto
nd all UFPDsfor a 2D polygonboundedy straightline and/or
curvededged19].

Bose and Bremnerpresentedalgorithmsto determinethe
existenceof a UFPD for a genus-zer@olyhedron[20]. Their
algorithmsonly nd UFPDswith planarparting surfaces;UF-
PDs with non-planarparting surfacesare ignored. Ahn et al.
presentecdnexhaustve algorithmto nd all thecombinatorially
distinctUFPDsfor a3D (facetedpolyhedrorin time O(n®logn)
andamoreef cient but morecomplicatedalgorithmthatrunsin
time O(n*). They divided the whole Gaussiarsphereinto con-
nectedregions formed by an arrangemenbf greatcircles and
greatcircular arcs. Within eachregion, the polyhedronhasthe
same2-moldability for all directions;henceonly onedirection
needsto be testedin eachregion, accomplishedy testingthe
verticesof thearrangementln their paperthey alsoprovedthat
the O(n*) time complexity is optimal in the worst caseby pre-
sentingan examplewith W(n#) combinatoriallydistinct parting
directions. However, in practice,dueto their algorithm's com-
plexity, their implementatiorinsteadrevertedto testingheuris-
tically chosendirectionsbasedon input edgeorientationsand
additionalrandomly chosentest directions. Elber et al. gave
anexactsolutionfor a modelboundedy NURBS surfaces but
it is restrictedto a completelysmoothboundarythatis C2 ev-
erywhere[21]. Khardekaret al. developeda programmable-
graphics-hardareacceleratedlgorithmto testthecombinatori-
ally distinct UFPDsfor a triangulatedpolyhedron.Theirimple-
mentationcan graphicallydisplay the undercutfor a particular
partingdirectionin lineartime with respecto the numberof tri-
angularfacesin the solid model. To nd a UFPD, they tested
thefacenormaldirectionsandtheintersection®f sphericakon-
vex hulls [22], eachof which boundsan inaccessibleegion on
the Gaussiarspherecorrespondingo directionsin which a pair
of facesmay occludeeachother[23]. Although nding asingle
UFPDis greatlyacceleratedisingtheir algorithm,either nding
all UFPDsor de nitely statingthatno UFPDsexist takesO(n°)
time.

In summary heuristicapproachesannotalways nd a di-
rectionthatis indeeda UFPD, andamongthe existing exhaus-
tive approachesor general3D polyhedra,the besttheoretical
time complexity is O(n*), which is not interactie for anything
beyond relatively simple geometries.To take advantageof the
completenessf the exhaustie algorithmsandmake themprac-
tically useful,speedingup the runningtime is thusthe focus of
ourresearchln thenext sectionwewill giveanoverview of our
proposedeature-basedpproacto nding all UFPDs.

3 FEATURE-BASED APPROACH TO FINDING ALL UF-
PDS
Currently most CAD systemsuse feature-basedlesign,
which maintainsadesignhistoryfor latereditingandreconstruc-
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tion. The overall geometryis obtainedby performingBoolean
operationson a treeof featurescommonlyincluding extrusion,
revolution, sweepand loft features. Thesefeaturesare usually
constructedby rst drawing 2D contourswhichwe call 2D gen-
erator pro les, and then performing 3D operationson the 2D
contours.

We obsenrethatfor unionsof featuresadirectionisaUFPD
for the overall geometryonly if it is a UFPD for every individ-
ual feature.Basedon this obsenation,we have proposeda new
feature-basedpproacho nding all UFPDsby rst nding aset
of UFPDsfor eachfeatureandthentestingonly thedirectionsin
the intersectionof all suchsetsusing an exhaustie algorithm.
Using the proposedapproachthe setof possibleUFPDsfor a
partcontainingindividual featurescanbe reducedor eachfea-
ture addedto the designtree, ef ciently identifying mary parts
that have no UFPDsandreducingthe searchspacefor exhaus-
tive algorithmsthat nd all UFPDs.Moreover, thefeature-based
analysiscan be implementedincrementally Potential UFPDs
for eachindividual featureare only computedonce. Wheneer
a new featureis added,the previously testedpotential UFPDs
by the exhaustve algorithmis re-classi edonly againsthe new
featurebeforerunningtheexhaustie algorithmagain saving re-
computatiortimewhentheoverallgeometryis updatedWe have
presenteaur algorithm nding all UFPDsfor extrusionsin [24].
In this paperwe shav how to nd all UFPDsfor solidsof revo-
lution.

4 ASSUMPTIONS AND BACKGROUND
4.1 Assumptions

In this paper we studysolidsof revolution thatareformed
by rotating 2D generatorpro les 360 aroundtheir coplanar
axes. We assumethat the 2D generatormro les are polygons
composedf only straightline segments(so the crosssections
for theresultingsolidsof revolutionareboundedy straightlines
and/orhyperboliccurves). The boundaryof the 2D generator
pro le doesnotcrosshut maytouchtheaxisof revolution,which
is the casein CAD systemssuchasSolidWorks. Withoutlossof
generalitywe assumehatboththe 2D generatopro le andthe
axisof revolution lie onthe x-z planeandthatthe axis of revolu-
tion coincideswith thez axis. Whenthe 2D generatopro le has
holes,the resultis trivial sincethe solid of revolution contains
voids; no directionsareUFPDs. Thuswe only considerthe case
wherethe 2D generatoipro le is a simple polygonthat hasno
holes. We alsoassumehatthe 2D generatopro le is non-self-
intersecting.

Forapolygon,possiblycurvedif it is theboundaryof across
sectionfor the solid of revolution, we use the right-handrule
cornventionthat the edgesof the polygonareorientedin sucha
way thattheinterior of the polygonlies on theleft whenmoving
alongthe directededges— thatis, the boundaryof the polygon
is orientedcounterclockwiseThe edgenormalsareunit vectors

pointingtowardsthe exterior of the polygon.

To represenall directionsin 2D Euclideanspace we use
a Gaussiarcircle; eachdirectionin 2D can be representedby
a point on the Gaussiarzircle by normalizingthe directionto a
unit vectorandplacingits tail atthe origin. Similarly, we usea
Gaussiarsphereto representll possibledirectionsin 3D. The
+ z directionis mappedo the northpoleandthe zdirectionis
mappedo the southpole.

4.2 UFPDs for 2D Curved Polygons

This sectionsummarizeghe 2-moldability analysisfor 2D
curved polygonspresentedn our previous work [19], which is
usedin our algorithmfor nding all UFPDsfor solidsof revolu-
tion. For our 2D algorithm,we introduceda datastructurecalled
the normal graph that captureghe edgenormalsandtheir con-
nectvity, givena possiblycurved polygon. By traveling around
the polygoncounterclockwisestartingfrom ary edge,the edge
normalsare mappedonto the Gaussiartircle. They arecalled
normal points Eachstraightedgecorrespondgo one unique
normalpoint. Eachsimple (i.e., Gt-continuousbut without ary
in ection points) curve correspondgo two normal points, de-
noting normalsat the startpoint and end point. Normal points
may coincidewith eachother Two sequentiallymappechormal
points(not necessarilyadjacenobn the normalgraph)represent-
ing differentedgesareconnectedy anarclessthan180 around
the Gaussiartircle. Thetwo connectedhormalpointsmayrep-
resentwo adjacenstraightedgespnestraightedgeandthe start
pointof the (next) curvededge the endpoint of thecurvededge
andthe (next) straightedge theendpoint of thecurvededgeand
the startpoint of the (next) curvededge,or the lastmappecdhor-
mal pointandthe rst mappedormalpoint. Two normalpoints
representinghe startpoint andthe endpoint of the samesimple
curve are also connectedvy an arc, which is orientedcounter
clockwiseif the curvatureof the curveis positive andclockwise
if the curvatureis negative (the curvatureis positive if its cen-
ter lies on the left whenmoving alongthe curve, negative if its
centerlies on theright). The arcsconnectingthe normalpoints
arecallednormalarcs Normalarcstogethemwith normalpoints
form the normal graph. An examplenormalgraphis shavn in
Fig. 2(b).

Eachnormalarc connectg¢wo normalpointsandeachnor-
mal point is spannedy two arcs. If thetwo arcsspanningthe
samenormalpointhave oppositeorientationgonecounterclock-
wise andthe otherclockwise),the normalpointis calledaturn-
ing point. Thenormalgraphcanbesimpli ed to asummarynor-
mal graphin orderto optimizethe speedvhencheckingthe 2-
moldability of the polygon.Onthe Gaussiarircle, therearetwo
kindsof points. For somepoints,theray startingfrom the center
of the Gaussiartircle, passinghroughthe point, andpointingto
in nity intersectghe normalgraphonly once,showvn by a thin
blackline on the summarynormalgraphin Fig. 2(c); for other
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Figure 2. (a) A curved polygon; (b) normal graph (normal points and normal arcs expanded out from Gaussian circle for visualization purposes); (c)
summary normal graph; (d) Gaussian circle is divided into regions; (e) Result in (d) is rotated 90 CCW (UFPDs in thin green, non-UFPDs in thick blue).

points,therayintersectshenormalgraphmorethanonce shavn
by athick redline in Fig. 2(c). Intersectionst turning pointsdo
not count. The classi cationof all pointson the Gaussiareircle
is shavn onthe summarynormalgraph(Fig. 2(c)).

In [19], we proved thatif andonly if aline L that passes
throughthe centerof the Gaussiarcircle intersectshe normal
graphexactly twice, the directionperpendiculato L is a UFPD.
Thusin the gure, the two intersectionf L with the summary
normalgraph,if it correspondso a UFPD,will bothhave to be
with thethin blackportioncorrespondingo asingleintersection
with the original normalgraph(seeFig. 2(c)). Lines whereei-
therintersectioris with theportionshavn in thick redmeanghe
directionperpendiculato L is a non-UFPD.Therefore we can
divide the Gaussiartircle into regionswithin which L intersects
thesummarynormalgraphat exactly two thin blackpoints(such
regionsaredenotedby athin greenline in Fig. 2(d) andmaybe
a single point), andregionswithin which L intersectghe sum-
marynormalgraphat oneor morethick red points(suchregions
are denotedby a thick blue line in Fig. 2(d)). The regionsare
boundedby turning points or their re ections throughthe cen-
ter of the circle. The resultis thenrotatedaroundthe Gaussian
circle 90 to obtainthe correspondindJFPDs. Thin greenre-
gionscorrespondo UFPDsandthick blueregionscorrespondo
non-UFPDgFig. 2(e)).

5 FINDING ALL UFPDS FOR SOLIDS OF REVOLU-
TION

Foragenerapolyhedronadirectiond isaUFPDif andonly
if every line parallelto & intersectshe boundaryof the polyhe-
dron at mosttwice, whereanintersectionrmay be eithera point
or aline sggment[12,26].

Previousresearctfor nding all UFPDsfor a solid of rev-
olution assumedhatall UFPDscanbe obtainedby taking each
edgeof concaity featureson its 2D generatopro le and nd-
ing the intersectionof associatediemi-circleson the Gaussian

,\3’

@ (b) ©

Figure 3. (a) A solid of revolution with 2D generator pro le shown; (b)
UFPDs parallel to the plane of the 2D generator prole, in thin green,
assumed by [25]; (c) A line | parallel to @ intersects the boundary of a
cross section of the solid four times, which makes @ a non-UFPD.

circle,whereeachedgede nesahemi-circlethatis boundedoy
aline parallelto theedgethroughthecircle centerandthatlieson
the sideof theline wherethe edgenormalpoints. This intersec-
tion de nesUFPDsfor the2D generatopro le; it is thenrotated
aroundthe poleaxisonthe Gaussiarspherg25]. An exampleis
shavnin Fig. 3(a),for which all proposedJFPDsparallelto the
planeof the 2D generatopro le areshavn in Fig. 3(b) by thin
greenlines,with & beinganexampleUFPD.However, checking
a hyperbolicconic sectionC parallelto the 2D generatompro-
le shows thatthereis aline | parallelto & that intersectsthe
boundaryof C, andhencethe boundaryof the solid, morethan
two times. Therefore,d is not actuallya UFPD. Next we will
describehow we cancorrectly nd all UFPDsfor ary solid of
revolution.

In [24], we provedthata directiond is a UFPDfor a given
polyhedronif andonly if @ is a UFPDfor all the crosssections
in afamily parallelto &, wherea family of crosssectionsarede-
ned asanin nite numberof crosssectionsthat are parallelto
eachother The particularorientationof a family of crosssec-
tionsparallelto & canbeselectedarbitrarily. However, sinceit is
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Figure 4. (a) A solid of revolution with 2D generator pro le shown; (b) A
family of cross sections parallel to the axis of revolution and a test direction
that lies in the plane perpendicular to the 2D generator prole (only ve
cross sections are shown).

enoughto testonly onefamily of crosssectiongarallelto @, for
solidsof revolution, we usevertical crosssectionsthat are par
allel to the axis of revolution (z axis) andthe testdirection(see
Fig. 4).

Furthermorethe2-moldabilityof asolid of revolutionis cir-
cularly symmetricaroundthe axis of revolution. If adirectionis
aUFPD,all directionshaving the samelatitudeon the Gaussian
sphereareUFPDsandvice versafor non-UFPDs.Thereforeto
testthe 2-moldability of solidsof revolution,we only needto test
all thedirectionsfor 2-moldability that are parallelto oneverti-
cal plane. Without loss of generality we choosethe x-z plane
andtestthe family of crosssectionsthat are parallelto the x-z
planefor 2-moldability, sinceadirectionparallelto thex-z plane
is aUFPDif andonly if it isaUFPDfor all crosssectionsn the
family. After all UFPDsparallelto thex-z planeareobtainedthe
resultis revolvedaroundthe pole axis on the Gaussiarsphereo
form all the UFPDsfor the solid of revolution (for anexample,
seeFig. 5). Therestof thepapemwill focusonhowto nd all UF-
PDsthatareparallelto thex-z plane.Unlessotherwisespeci ed,
thetestdirectionandthe crosssectionsonsidere@reparallelto
thex-z planefor theremaindeiof the paper

Notethatthe boundaryof a crosssectionparallelto but not
in the x-z planefor solids of revolution is composedf hyper
bolic segments.To analyzethecrosssectionwe rst shov some
propertiesof hyperbolicconicsections.

5.1 Hyperbolic Conic Sections

We assumehat the axis of a right circular coneis coinci-
dentwith the z-axis. Whenintersectedy a vertical planepar
allel to the x-z plane,the coneproducesa hyperboliccurve (see
Fig. 6(a)). If the coneis trimmedat the bottomby a horizontal
planeparallelto the x-y plane,the hyperboliccurve mayalsobe
trimmed(seeFig. 6(b)). The asymptote®f all hyperbolicconic
sectionghatareparallelto the x-z planeare projectedto the sil-

I

@) (b) ©

Figure 5. (a) A solid of revolution with its 2D generator pro le outlined;
(b) All directions parallel to the X-Z plane with UFPDs in light green and
non-UFPDs in dark blue; (c) Rotation of the result obtained in (b) on the
Gaussian sphere.

Intersecting
plane

@) (b)

Figure 6. (a) conic section is a hyperbola; (b) hyperbola is timmed by a
horizontal plane.

houettdinesof theconeonthex-z plane.

For a(possiblytrimmed)cone thefollowing theoremholds.
Thefull proofis deferredto the full versionof the paperdueto
spaceestrictions.

Theorem 1. Given a direction @ that is parallel to the x-z

plang if the smaller angle betweenthe z axis and @ is larger

thanthe anglebetweerthe z axis and the asymptote®f the hy-

perbolic conic sectionswe canalways nd a line parallel to &

sud thatit intersectsa hyperbolicconic section(and hencethe

conic surface)twice; otherwise a line parallel to & intersects
anyhyperbolicconicsectionat mostonce

5.2 2-Moldability of Solids of Revolution

In this section,we shav thatthe 2-moldability of solids of
revolution is constrainedy the edgesof the 2D generatoipro-
les, whichlie onthex-z plane.

Givena 2D generatopro le for thesolid of revolution, de-
noteEi, = f eng thesetof edgesonthe2D generatopro le that
have normaldirectionspointinginwardto the axis of revolution,
en hot on the axis of revolution. For eachey,, denoteq, the
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Figure 7. Line | intersects the solid of revolution at least four times.

smalleranglebetweerg;, andthe z axis. We have the following
lemma.

Lemma 2. If adirectiond, parallel to thex-zplane isa UFPD
for the solid of revolution,denotingg the smalleranglebetween
@ andthezaxis,wehaveq min(Qin).

Proof. For ary edgeen, 2 Ej, its revolution aroundthe z axisis
a (possiblytrimmed) cone. Without loss of generality suppose
thenormaldirectionof ey, pointsupward. We will provethatary
directiond with g > g, is nota UFPDfor thesolid of revolution.

From Theorem1, for ary direction @ with g > g, there
alwaysexistsaline | parallelto & intersectingtwice with a hy-
perbolic conic sectionof the coneformedby e, (Fig. 7). The
line | goesupwardinto theinterior of the solid at oneintersec-
tion A andexits the solid alongthe samedirection. It alsogoes
downwardinto theinterior of the solid at anotherintersectiorB
and exits the solid alongthe samedirection. With at leasttwo
entrancesandtwo exits, | intersectdhe solid at leastfour times.
Therefored is nota UFPDfor the solid of revolution.

In otherwords,if & is a UFPDfor thesolid of revolution,we
musthaveq qi, for all ey, thatis,q  min(qin).

Sinceall UFPDsmusthave g qin for ary e, having a
normal direction pointing inward to the axis of revolution, we
saythat UFPDsareboundedby the revolution of e,. For edges
Eou = f eoueg With normaldirectionspointingaway from the axis
of revolution, a similar statemenholds:

Lemma 3. Givena UFPD @ for the solid of revolutionand an
edee ey onthe 2D geneator pro le, if oneor bothendpointsof
€y are concaved is eitherin a region of the Gaussiansphee
boundedy therevolutionof ey or is a horizontaldirection.

Proof. To prove this lemma,we have threecases:only theend
pointof directededgeeys is concae, only the startpoint of ey
is concare, or both the startpoint andthe end point of ey are
concae. Sincethe proofsfor thesethreecasesare similar, we
only provide theprooffor the rst casehereto sare space With-
outlossof generalitywe assumeéhatthenormaldirectionof eq
pointsupward.

With illustrationin Fig. 8(a),we analyzetheedgee;, whose
end point is concare. Call the polygon containinge;, on the
boundaryof thecentralcrosssection P. (This crosssectioncon-
sistsof the generatompro le andits re ection, soit may contain
oneor two disconnectegolygons.)Thelocalnormalgraphate;
for P is illustratedin Fig. 8(b), with normalarcsconnectingng,
n; andny, thenormalsof edgesy, e; ande,, respectiely.

Whentheintersectingplanemovesalittle furtheraway from
the x-z plane,the boundaryof the crosssectioncontainsa pair
of symmetrichyperbolicsggmentscorrespondingo eachedge
onthe 2D generatopro le. Denotethe curved polygonon this
boundarycontaininga setof connectedyperbolicsggmentsas
P2 The local normalgraphfor P? hasnormal arcsconnecting
Noe, N1s, N1e @nd nys (seeFig. 8(b)), wheren;s and nie denote,
respectiely, the normalsat the start point and end point of a
hyperbolicsggmenton the coneformed by . Projectedonto
the x-z plane,one of the asymptotegor the hyperbolicsggment
coincideswith g. It canbe shavn from the equationf the hy-
perbolicsggmentandtheline e; thatnis andnge will alwaysbe
closerto the + z directionon the normalgraphthanni, with nie
evencloserthannis. Sincetheendpoint of e; is concae, nge is
closerto the + z directionon the normalgraphthannys. There-
fore, the normal point nye is a turning point. On the summary
normalgraph,the arc betweennie andnys or nys, whichever is
closerto the z axis, will correspondo directionswith morethan
oneintersectiondetweerthe ray startingfrom the centerof the
Gaussiarrircle andthe normalgraph. This arc, after rotating
90 counterclockwisecorrespondgo a setof non-UFPDs(re-
call the exampleshawn in Fig. 2). Note thatthe positionof nie
changegontinuouslyfrom n; (atthe centralplane)to in nitely
closeto the + z direction (whenthe hyperbolicconic sectionon
the coneformedby e, shrinksuntil it disappearsasthe inter
sectingplane moves away from the x-z plane. The whole arc
on the summarynormalgraphbetweem; andthe + z direction
thereforecorrespondso non-UFPDsafter rotation, not includ-
ing the + z direction (seeFig. 8(c)). Sinceall crosssectionsare
symmetricrelative to the z axis, the re ection of this arc about
the z axis also correspond$o non-UFPDs after rotation. The
remainingpart of the summarynormalgraphstaysunclassi ed.
In asummarythe UFPDsareboundecdby therevolution of e;.

Theproofis similar for the othertwo cases.

In this section,we have shovn how to pre-identifya setof
non-UFPDsusingLemma?2 andLemma3. The directionsnot
in this setarecandidateUFPDs In the next section,we further
classify thesecandidateUFPDs(as UFPDsor non-UFPDs)by
analyzingthreedifferentcases.

5.3 Types of Solids of Revolution

We canclassifysolidsof revolutioninto threecateyories(see
Fig. 9), basedon the propertiesof the closestelement(s)vertex
oredge)onthe2D generatopro le totheaxisof revolution. The

Copyright ¢ 2007by ASME



(a) Typel

(b) Typell

(c) Typelll

Figure 9. Types of revolution. Type I: single closest element is an edge or a vertex that lies on the axis of revolution; Type II: single closest element is an

edge or a vertex that does not lie on the axis of revolution; Type Ill: multiple closest elements that may or may not lie on the axis of revolution.

@) (b) ©

Figure 8. P: boundary of the central cross section; P": boundary of a
non-central cross section. (a) Edge €1 points away from the axis of revo-
lution, with a concave end point; (b) local normal graphs at €; (dark for P,
light for PC). Part of the summary normal graph is classi ed as the non-
UFPD region; (c) Identied non-UFPD sets, in thick blue, not including
horizontal directions (note 90 rotation from normal graph).

rst two typeshave only oneclosestelementA typelll solid of
revolution hasmultiple closestelements.

5.3.1 Type |l. Fortypel revolutions,theclosestlement
on the 2D generatorpro le to the axis of revolution is a single
edgeor vertex thatlies onthe axis (seeFig. 9(a)).

Whenthe closestelementis an edge,the boundaryof the
centralcrosssectionintersectghe axis exactly twice at the two
endpointsof the closestelementand containsa single faceted
polygon. Any othercrosssectionparallelto the x-z planecon-
tains a single curved polygon. For eachof the crosssections
parallelto the x-z plane we canthusbuild a normalgraphfor its
boundary

Whentheclosestlemeniedge)hasanin nitesimal length,
it degenerateso avertex. We cantreatthe boundaryof the cen-
tral crosssectionasa simple polygonwith two verticeshaving

the samecoordinatevalues. The topology of the boundaryof
the centralcrosssectionis the sameaswhenthe closestelement
is an edgewith anin nitesimal length. Sincethe normalgraph
only captureghetopologyof polygons the normalgraphfor the
boundaryof the central crosssectionis not affectedwhenwe
treatthe vertex (closestelement)as an edgewith in nitesimal
length. Crosssectionsotherthanthe centralcrosssectionhave
onecurvedboundaryeach.Thenormalgraphis uniquefor every
crosssection.

For theremaindepf thissectionwe will thusonly dealwith
the generalizedcase. Thatis, the closestelementis an edgeon
theaxisof revolution, with a nite orin nitesimal length.

Supposeave have thenormalgraphdor all thecrosssections
parallelto the x-z plane. Thenwe analyzethesenormalgraphs,
nd asetof UFPDsfor eachandthencalculatetheirintersection,
which formsall the UFPDsparallelto the x-z planefor the type
| solid of revolution. It turns out that this intersectionalways
equalsthe setof UFPDsfor the boundarypolygonof the central
crosssection. This meansthat the centralcrosssectiondeter
minesthe 2-moldability of the type | solid of revolution (after
the candidatedJFPDsarepre-identi ed). The proofis provided
asfollows.

Lemma 4. Assumingthat a direction &, parallel to the x-z
plang is a candidateUFPD for a typel solid of revolution, it
isindeeda UFPD if andonlyif it is alsoa UFPD for thebound-
ary polygonP of thecential crosssection.

Proof. =) Supposghatd werea UFPDfor the solid of revolu-
tion but nota UFPDfor P. Thereexistsaline thatis parallelto &
andintersectd? morethantwo times. Hencethis line intersects
therevolved surfacemorethantwo times. Therefore,& is nota
UFPDfor thesolid of revolution.

( = Supposdt is acandidatdJFPDfor thesolid of revolu-
tion andis a UFPDfor P. We will show thatd is alsoa UFPD
for the boundarypolygon PP of ary othercrosssection. Thusd
is a UFPDfor all crosssectionsof the solid andhencea UFPD
for thesolid of revolution.
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Figure 10. (a) Both endpoints of edge €1 of the generator prole P are
convex, a non-central cross section with boundary PYis shaded; (b) local
normal graphs at € (dark for P, light for P9.

@) (b) ©

Figure 11. (a) Start point is convex and end point is concave for edge
€1; (b) Original local normal graphs at €1 (dark for P, light for P%; (c)
equivalent local normal graphs of (b).

Wheneachedgeg on P correspondso a straightor hyper
bolic sgmenton P? (that is, the numberof edgeson P equals
the numberof edgeson PY, accordingto the corvexity of the
endpointf g, we have four cases.

1. Boththestartpointandthe endpoint of e arecornvex.

2. Thestartpointof g is corvex andthe endpointis concae.
3. Thestartpointof g is concae andthe endpointis corvex.
4. Boththestartpointandthe endpointof g areconcae.

For the rst casewhen both endpointsof g are corvex,
the local normal graphsat e; for both P and P° are shawn in
Fig. 10(b). It is obviousthatthe UFPDsfor P andP°areequi-
alent since their summarynormal graphsare identical locally
aroundthe normalpointn;.

For the secondcase(Fig. 11(a)),thelocal normalgraphsat
e, for P andPPdiffer only in thepre-identi ednon-UFPDregion
(Fig. 11(b), boundedby the symmetricarc aroundthe z axis),
which is derivedaccordingto Section5.2. Sincedirectionscor-
respondingdo this region arealreadyclassi edasnon-UFPDsg

(@) (b)

Figure 12. The boundary of the cross section has fewer edges as it
moves away from the axis of revolution.

(@) (b)

Figure 13. (a) Central cross section when the closest element is a single
edge; (b) central cross section when the closest element is a single vertex
(for purposes of visualization, the two coinciding vertices on the axis of
revolution are pulled apart slightly).

is notin this region. Thusthis portion of the normalgraphcan
beignoredandsimpli ed by moving the turning point n1¢ onto
the boundaryof this region. The equivalentlocal normalgraph
at e; for P% shawn in Fig. 11(c), is thusthe sameasthe local
normalgraphfor P. Therefore giventhatd is a UFPDfor P and
acandidatdJFPDfor thesolid, @ is alsoa UFPDfor P°

Case3 andcase4 canbeexplainedusingthe samelogic.

Whenthe numberof edgesof PCis smallerthanthat of P,
thenormalgraphcanbe analyzedsimilarly. But therearefewer
normalarcson the normalgraphfor P°thanfor P sincethe hy-
perbolicsggmentscorrespondindo someedgeson the 2D gen-
eratorpro le will disappeaastheintersectingplanemovescon-
tinuously away from the x-z plane(seeFig. 12). However, the
samelogic still applies. Therefore we canusethe boundaryof
the centralcrosssectionaloneto further classify the candidate
UFPDs.

The boundarypolygon of the centralcrosssectioncan be
constructedlirectly from the 2D generatompro le by takingthe
boundaryof theunionof theinteriorsof the2D generatopro le
andits re ection, connectvity takenasshavnin Fig. 13(b)when
theclosestelemenis a singlevertex.
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Figure 14. (a) An example of type Il solid of revolution; (b) central cross
section; (c) a cross section whichis S €away from the X-Z plane (line |
is parallel to the test direction and intersects the cross section more than
two times).

5.3.2 Type Il. For typell revolutions,the closestele-
menton the 2D generatompro le to the axis of revolution is a
singleedgeor vertex thatdoesnotlie on theaxis (seeFig. 9(b)).

When the closestelementis an edgee, the only possible
UFPDsarethe+zand zdirections.This canbeeasilyproved.
Supposehe distancebetweene andthe axis of revolution is s.
Considetheverticalintersectingplanethatiss eawayfromthe
x-zplane,e> 0. Wheneis smallenoughfor ary givendirection
O (exceptthe+zand zdirections)therealwaysexistsaline |
parallelto & intersectinghe boundaryof the crosssectionmore
thantwo times(seeFig. 14).

We now analyzethe only remainingcandidatdJFPDs,i.e.,
the+zand zdirections,andshav how they canbe testedby
corverting the geometryto a type | revolution with equivalent
UFPDs.

SupposeV is a point on g, not necessarilyone of its end-
points. Call its projectiononto the axis of revolution O (see
Fig. 15(a)). As we prove below, insertingtwo oppositelyori-
entededgesvVO and OV into the 2D generatompro le doesnot
affect the 2-moldability of the solid of revolutionin the + z and

zdirections.Theadditionaltwo edgesarerevolvedto form two
disks,with normalspointingin the+zand zdirectionsrespec-
tively. Sincee is the closestelementon the 2D generatoipro le
to the axis of revolution, thesetwo disks are neitheroccluded
by nor occludeany partof the original solid of revolution, when
viewedfrom the+zand zdirections respectiely. Hencethey
do not add newv undercutsor changeexisting undercuts. That
is, the 2-moldability of the solid of revolutionin the+zand z
directionsis not changed.Directionsotherthanthe+zand z
directionsremainnon-UFPDs.

If we weld the two new edgesat their openvertices,the
2D generatompro le becomesghat for a type | revolution. As
is provedin the above section the boundaryof the centralcross
sectioncan be easily constructedand uniquely determineghe
2-moldability of the solid of revolution (seeFig. 15(a)). Note

() (b) (©

Figure 16. Type Il solids of revolution. (a) Closest elements lie on the
axis of revolution; (b) closest elements does not lie on the axis of revolu-
tion; (c) a cross section, which is S+ € away from the X-Z plane, has a
hole.

thatdirectionsotherthanthe+zand zdirectionsareobviously
non-UFPDdor the constructeatentralcrosssection.

Whenthe closestelementis a vertex V, supposehe projec-
tion of V on the axisis O (seeFig. 15(b)). Similarly, adding
two edgesvO andOV (seeFig. 15(b))to the 2D generatopro-
le doesnot changethe 2-moldability of the solid of revolu-
tion. Thatis, up-facets(respectiely, down-facets)remainup-
facets(respectiely, down-facets),no new undercutsare added,
andno existing undercutsareaffected,relative to a given candi-
dateUFPD (the pre-identi ed non-UFPDgemainnon-UFPDSs).
Thuswe againcorvert the geometryto a type | revolution with
equivalentUFPDs.

5.3.3 Type lll. For type lll solids of revolution, there
aremultiple closestelementgedgesor vertices)on the 2D gen-
eratorpro le to theaxisof revolution.

Whenthe closestelementdie on the axis, no directionsare
UFPDsfor the solid of revolution sinceone or more holesare
presenbn the centralcrosssection(seeFig. 16(a)for anexam-
ple). No directionsare UFPDsfor the centralcrosssectionand
hencefor the solid of revolution.

Whenthesemultiple closestelementsdo notlie on the axis
of revolution, supposéhe distanceof the closestelementgo the
axis of revolution is s. Considerthe intersectingplanethat is
s+ eawayfromthex-zplane,e> 0. Wheneis nottoolarge,the
crosssectionhasaholein themiddle(seeFig. 16(c)). Therefore,
no directionsare UFPDsfor this crosssectionandhencefor the
solid of revolution.

In summarytypelll solidsof revolution arenot2-moldable
in ary direction.

5.4 Summary and Algorithm
From the above discussion,we can concludethat the 2-
moldability analysison a solid of revolution canbe obtainedby
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Figure 15. Type Il solid of revolution. (a) Modi ed central cross section when the closest element is a single edge; (b) modi ed central cross section when
the closest element is a single vertex. For purposes of visualization, coinciding edges are pulled apart slightly.

Input  : Py, 2D generatopro le onthex-z plane;
z, axis of revolution.

Output : Setof UFPDsF parallelto thex-z plane.

Traveling aroundPy to nd all the closestelementsE..
if sizeofEc) > 1then
Solid of revolutionis typelil.

ReturnF =null.

else
Solid of revolutionis typel or II.
F1=90.

foreachedge g on Py, if normalof g pointstoward
zor at leastoneendpointof g is concaveand
normalof g pointsawayfromzdo
g = anglebetweeng andz axis.
F1=min(F1;0).
end
ConstrucipolygonP accordingo Fig. 13 (typel)
or Fig. 15 (typell).
Find all UFPDsF ; for P using2D algorithm.
if noedge on Py hasa normalpointingtoward z
then S
ReturnF = ([90]_ F1;90 + F41] [270
F1;270 + Fl]) Fo.
else S
ReturnF = ([9g F1;90 + Fi1] [279
F1;270 + F1] [0;0] [180;180]) Fo2.

end
end

Algorithm 1: FindingUFPDsBrRevolution()

performinganalysison its 2D generatoipro le only. Thealgo-
rithm is summarizedn the Algorithm 1 box.

In our previouswork, we provedthat nding all UFPDsfor
apolygonP takesO(n) time [19]. Extractingall the closestele-
mentsand nding theminimumpF ; alsotakesO(n) time. There-
fore, the overall algorithmfor nding all UFPDsfor a solid of

10

revolution hasa time compleity of O(n).

6 CONCLUSIONS

Finding all UFPDs at interactive speedsgives designers
maximum e xibility choosinga parting direction early in the
designprocesswhenredesigncostis the lowest. Existing ap-
proachesithercannot nd all UFPDs(heuristicapproachesyr
cannotrun at interactive speedgor anything beyond relatively
simple part geometriegexhaustve approaches) We have pro-
posedanew feature-basedpproacho reducethetimeto nd all
UFPDs,taking advantageof feature-base@€AD systemsSince
UFPDsareconstrainedby eachindividualfeaturecomposinghe
geometryonly whenadirectionis aUFPDfor all featuresisit a
potentialUFPD for the overallgeometry Thusonly thesedirec-
tionsneedto betestedusinganexhaustve algorithm;otherwise,
thedirectionis directly classi ed asa non-UFPDfor the overall
geometry

In this paper we shavedhow to nd all UFPDsfor a solid
of revolutionvia analyzingits 2D generatopro le in O(n) time.
TheseUFPDswere previously found correctlyonly by exhaus-
tive algorithmsfor arbitrary partsthattook at leastO(n?) time.
Sincerevolvedfeaturesoften greatlyconstrainthe potentialUF-
PDs for the overall geometry the test spaceon the Gaussian
spherebecomessigni cantly smallerthan the entire Gaussian
spherethatpreviously hadto betested.If nodirectionsare UF-
PDsfor all revolvedfeaturesthe partcanbeimmediatelyiden-
tied asnon-2-moldablewithout further testing; in this case,
designerscan either go backto redesignthe part geometryor
choosean optimal parting directionfor a mold with morethan
two piecesbasedon othercriteria suchasthe numberof under
cutsor undercutvolume.

Somepeoplearguethatdesigneraisuallyusedirectionsthat
arealignedwith or normalto revolution axis directionsaspart-
ing directionswhenrevolved featuresexist. While thisis a fact
in currentpractice;t is becaus¢hesearethedirectionswhose2-
moldability a humandesignercanmosteasilyevaluate.Our al-
gorithm automaticallyprovidesdesignerswith more alternatie
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Figure 17. An example containing a revolved feature, with the 2D gen-
erator pro le highlighted. The only UFPD for the example geometry is ,
which is neither the revolution axis direction nor one of its normal direc-
tions.

UFPDsto choosefrom. With candidatepartingdirectionspre-
de ned asrevolution axis directionsor their normaldirections,
eitherthe designinnovation and alternatves are limited or the
manuficturingcostrisesbecausef theundercutsFig. 17 shavs
an examplecontaininga revolvedfeature. The geometrywould
causeundercutsf the partingdirectionis de ned asthe revolu-
tion axisdirectionor oneof its normaldirections.Our algorithm
nds the UFPD,which enableghe partto be manufcturedat a
lower cost.

Whetherundercutsxist is notthe only criteriawhenchoos-
ing anoptimal partingdirectionfor a complex geometry Other
factors suchasthecompleity of thepartingsurface alsoplayan
importantrole [1,27]. GenerallyUFPDsarethepreferredoarting
directions. But designersand manufcturersmay choosenon-
UFPDswith planarpartingsurfacesinsteadf all UFPDsrequire
complex non-planamparting surfaces. Our future work aimsto
de ne optimalpartingdirectionsfor anarbitrarygeometrybased
on multiple criteria aswell asexploring 2-moldability analysis
on morecomple featuretypessuchassweepsandlofts.
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