
Proceedings of IDETC/CIE 2006
ASME 2006 International Design Engineering Technical Conf erences &

Computers and Information in Engineering Conference
September 10-13, 2006, Philadelphia, USA

DETC2006-99666

FAST LAYERED MANUFACTURING SUPPORT VOLUME COMPUTATION ON G PUS

Rahul Khardekar
Department of Mechanical Engineering

University of California
Berkeley, CA 94720

Email: rahul@me.berkeley.edu

Sara McMains ∗

Mechanical Engineering
University of California, Berkeley

Berkeley, California, 94720
mcmains@me.berkeley.edu

ABSTRACT
We present a GPU-accelerated algorithm for computing a

fast approximation of the volume of supports required for layered
manufacturing in a given build direction, one criterion often used
to choose a direction that requires less time and material. In a
sequence of rendering passes that project the part in the given
build direction, we use depth peeling to identify faces bounding
supports. We exploit programmable graphics hardware to com-
pute the total height of all supports at each projected pixelloca-
tion, scale the values by pixel area, and finally sum over all pix-
els to find the total volume of supports. For sample parts tested,
our algorithm achieves over99% accuracy and running times
ranging from .2 seconds, for a part with 1,252 facets and depth
complexity 2, to 1.86 seconds, for a part with 419,798 facetsand
depth complexity 9.

INTRODUCTION
Prototypes are often built during product design to demon-

strate a concept, to design tools or packaging, to analyze man-
ufacturability, or for testing stress or vibration response of the
product [1]. Layered manufacturing processes are a class of
rapid prototyping processes that build 3-dimensional shapes by
depositing layers of raw material as illustrated in Figure 1. These
processes can quickly build a small number of prototypes with-
out any part specific tooling. Fused deposition modeling (FDM),
stereolithography and selective laser sintering are some examples
of layered manufacturing processes [2], [3].

∗Address all correspondence to this author.

Figure 1. (a) A sample part (b) Sliced part along with the support mate-

rial

Figure 2. 2D schematic of part showing the support material holding up

overhanging features and attaching the part to the build platform

As a pre-processing step for layered manufacturing, a build
direction is chosen and the virtual model of the product is sliced
by planes normal to that direction. The resulting slice contours
are then sent to a layered manufacturing machine where raw ma-

1 Copyright c© 2006 by ASME



terial is deposited layer by layer to build the entire shape.The
part is build on a build platform on which a thin base layer is
first deposited as shown in Figure 2. For many processes, addi-
tional material is also needed to support overhanging geometry
as illustrated in Figure 2. Adding this support material notonly
increases the manufacturing time, it also has to be removed upon
completion, a process that can damage the part surface. Along
with the amount of support material, factors like the accuracy
of important features, desired anisotropic strength properties of
a part, the desired surface finish of the part, and the manufac-
turing time also affect the choice of the build direction. With
respect to support material alone, an orientation minimizing the
volume of support is optimal. But in most cases, the final build
direction is chosen by considering trade-offs between all the fac-
tors described above. If the metrics based on these factors could
be computed interactively while comparing build directions, the
manufacturer could make an informed orientation choice. The
fast computation of the volume metric is difficult because ofthe
high complexities of geometric algorithms involved in identify-
ing faces needing supports; current commercial systems compute
the volume of support after the slicing is completed by comput-
ing Boolean differences between adjacent layers. We propose
to use the computational power of graphics processing unitsfor
computing this volume.

Graphics Processing Units (GPUs) have recently evolved
into programmable processors capable of performing general-
purpose computational tasks. Figure 3 shows a schematic layout
of a modern GPU. Two programmable units, the Vertex Process-
ing Unit (VPU) and the Fragment Processing Unit (FPU), can
execute a user-defined set of instructions in place of a fixed se-
quence of geometric transformations, lighting (per vertexoper-
ations) and texturing operations (per-pixel operations).Because
multiple vertices and pixels are processed in parallel, GPUs can
achieve much higher computational speeds than conventional
CPUs. We show that GPUs can be very useful for the fast compu-
tation of geometric metrics for manufacturing such as the support
volume.

Figure 3. Modern GPU architecture.

In this paper, we propose a GPU-based algorithm for com-
puting the volume of support material needed for layered manu-
facturing in a given build direction. Our algorithm can compute
the volume of support material as the user changes the geometry
as well as the build direction. We review the existing literature in
this area in the next section before describing the algorithm and
our results.

Previous work
Early work that looked at reducing support structure require-

ments for layered manufacturing focused on finding an orienta-
tion that would entirely eliminate the need for a support structure.
Thompson and Crawford propose a heuristic search method for
finding a build direction requiring no support [4]. Asberg etal.
present anO(n) algorithm for determining if there is any orien-
tation in which a polygon or a polyhedron withn vertices can be
built without supports [5].

Later work looked at minimizing the volume of support
structures. Allen and Dutta present an algorithm for “generat-
ing optimal supports” for any polyhedron [6]. But Majhi et al.
show that this algorithm, which essentially considers onlydirec-
tions parallel and orthogonal to edges of the convex hull, does
not always find an optimal solution, and furthermore that theap-
proximation error cannot be bounded [7]. In 2D, Majhi et al.
present algorithms to find an orientation for a polygon that min-
imizes the contact length of the support/part interface andthe
support-structure area [7]. Their 3D algorithm for finding an ori-
entation that minimizes the analogous contact area and support
structure volume for a polyhedron are limited toconvexpolyhe-
dra, however [8]. Agarwal and Desikan describe a more effi-
cient randomized approximation algorithm for solving the same
problem for convex polyhedra [9]. For the general case of a non-
convex polyhedron, they show that the set of build directions that
minimize the total area of faces that need support can have as
many asω(n4) connected components, suggesting that solving
the minimization problem for general polyhedra will be too slow
for interactive feedback for all but the simplest input.

Researchers have also looked at the problem of finding opti-
mal build direction based on multiple criteria including the vol-
ume of support material. Cheng et al. formulate a multi-criteria
objective function that is evaluated over a set of candidatedirec-
tions to find an optimum [10]. This function considers factors
like the number of surfaces perpendicular to the build direction,
the number of up-facing horizontal surfaces, the area of thebase
surface and the volume of support material. Lan et al. [11] pro-
pose a similar approach where candidate directions are tested for
optimality with respect to either surface quality, build time, or the
number of sample points needing supports. Frank and Fadel [12]
propose a rule based system for choosing the optimal build ori-
entation with respect to the volume of support material, surface
finish and tolerances.

2 Copyright c© 2006 by ASME



Related work on GPUs consists of various applications of
graphics hardware to manufacturing and other general purpose
problems. Previously, the z-buffer of graphics cards has been
used to speed the solution of manufacturing problems such as
tool path planning [13], [14], and inspection [15]. The advent
of programmable GPUs has increased the use of GPUs for gen-
eral purpose computing tasks such as computational geometry,
fluid simulations, database operations, and CAD [16]. Khard-
ekar et al. used programmable GPUs to interactively detect and
display undercuts (for providing feedback to designers of parts
to be molded or cast) [17]. The undercuts detected by this al-
gorithm are a subset of features that need supports in layered
manufacturing. These optimization algorithms could search over
a larger search space in the same amount of time by using our
new volume computation algorithm.

Definitions and terminology
We will use the following standard graphics-oriented terms.

As discussed earlier, modern GPUs contain two programmable
units, a VPU and a FPU. The VPU executes a user-defined pro-
gram called a “vertex program” for each vertex. A vertex pro-
gram can access vertex attributes such as the position, the nor-
mal, the color, lighting parameters, and texture coordinates. It
can also access a fixed system-dependent number of constant at-
tributes and textures. The vertex program outputs the color, the
texture coordinates and the transformed position for each vertex.
After this stage, vertices are assembled to form triangles that are
rasterized. During rasterization, triangles are subdivided into po-
tential pixels called fragments; per-vertex attributes such as the
color and the texture coordinates are linearly interpolated over
each triangle. The FPU then executes a user-defined “fragment
program” for each fragment. A fragment program can access
the interpolated vertex attributes and textures stored in the GPU
memory to determine the color and the depth value of each frag-
ment. In modern GPUs, fragment programs can access full float-
ing point textures (32 bits per color channel) as well as depth
textures that store depth values instead of color values. Finally,
fragments that pass a sequence of tests, including the z-test and
the stencil test, become pixels in the frame-buffer. In the stencil
test, a user-defined reference value is compared with the value
stored at the fragment’s location in a stencil buffer; the fragment
is discarded if the test fails. In the z-test, the GPU compares the
depth value of each fragment with the value stored in the corre-
sponding location in a (usually) 24-bit depth buffer, discarding
fragments that fail the user-chosen comparison. An “occlusion
query” returns the number of fragments rendered in the frame-
buffer for a given rendering pass.

We also use the following FDM-related terms in our algo-
rithms. On an FDM machine, a platform is first built on which
the actual part rests as shown in Figure 5. This platform is called
the “base.” The projected area of the base is slightly largerthan

Figure 4. Dummy triangles are rendered instead of the primitives to find

the minimum or the maximum value of scalar functions defined over all

primitives.

the projected area of the part when projected on the base plane.
We call the amount of offset applied to the boundary of the pro-
jection of the part to find the boundary of the base the “base off-
set.” The overhanging surfaces that require supports and are not
supported by the base are called “supported features.” The sum
of the volume of supports and the base gives us the total volume
of support material required.

We will now discuss of our algorithm for the volume com-
putation in detail.

Volume computation
We assume that the input for our algorithm consists of the

build direction and a triangulated boundary representation of the
part. Before starting our algorithm, we carry out the following
initialization.

OpenGL Initialization
Before starting the main algorithm, we set the following

OpenGL rendering parameters. We first set the look-at point (the
location at which the camera points) at the center of the axis-
aligned bounding box of the part (computed beforehand in the
original world-space coordinate system by recording the mini-
mum and the maximum value in each dimension while reading
in the part file). We place the eye-point (the location of the cam-
era) on the build direction outside the sphere bounding the axis-
aligned bounding box such that the camera is facing towards the
bottom surface of the part that is deposited first by the layered
manufacturing machine, thus aligning the viewing direction (the
direction from the eye-point to the look-at point) with the build
direction. Until we compute the exact clipping planes bounding
the part, we set them such that they enclose the sphere circum-
scribing the bounding box. For setting the near and far clipping
planes for the given viewing direction, we find the minimum and
the maximum distance between the part and the plane normal to

3 Copyright c© 2006 by ASME



the viewing direction containing the eye-point by using thefol-
lowing method. We assign a dummy triangle to each triangle
of the part and set the coordinates of the vertices of the dummy
triangle such that all dummy triangles have the same shape and
size and are rendered at the exact same location when projected
in the viewport, completely overlapping each other. Figure4
shows this process for two triangles. In actuality, these dummy
triangles occupy a very small number of pixels in the viewport.
For all three vertices of each dummy triangle, we compute the
minimum (respectively maximum) distance from the eye-point
along the viewing direction in a vertex program and set the z-
coordinate value equal to the computed minimum (respectively
maximum). We also set the color value of each vertex equal
to the new z-value, because the color attributes can have full
32-bit floating point precision instead of the 24-bit precision of
the depth attribute. We set the z-test such that the trianglewith
minimum (respectively maximum) z-value is visible. We read
back the color value for one pixel where the dummy triangles are
rendered to find the minimum (respectively maximum) distance
from the eye-point.

For finding the left and the right clipping plane, we tem-
porarily set our eye-point on the x-axis of the view-coordinate
system defined by the viewing direction and the up-vector (a vec-
tor defined during defining the camera that defines the up direc-
tion in the eye coordinate system). We refer the reader to [18] for
the details of obtaining the x-axis in world coordinates. Wethen
find the near and the far clipping plane from this new eye-point
and set them as the right and the left clipping plane respectively.
Similarly, we find the top and the bottom clipping planes by set-
ting the eye-point on the y-axis of the view-coordinate system.

We will now discuss our support volume computation algo-
rithm.

a

0.1 The volume of support material
For computing the volume of support material for a given

orientation, we render the first layer of front-facing facets (with
normals making an obtuse angle with the viewing direction) and
store their z-values in a color buffer. This corresponds to the
height of any supports attached to the base. We then render
consecutive layers of front-facing facets (relative to that orien-
tation) and back-facing facets by using a depth-peeling tech-
nique that peels off unwanted layers of facets using the two-
sided depth test that we will discuss in detail below [19]. We
observe that supports are enclosed between the(n+ 1)st layer
of front-facing facets and that portion of thenth layer of back-
facing facets whose projection overlaps the(n + 1)st layer of
front-facing facets. We use the stencil buffer to render only those
portions of the back-facing facets that overlap the correspond-
ing layer of front-facing facets (to form supports). Figure5 il-
lustrates a two-dimensional example in which supports are en-

Figure 5. Example of a two dimensional part requiring supports

closed between the second layer of front-facing facets and the
portion of the first layer of back-facing facets where their pro-
jections overlap. For every such pair of layers, we identifythe
supports calculating a per-pixel cumulative sum of the distance
between the layers, which is the height of the supports at every
pixel. In the end, we add values stored at all pixel locationsand
multiply the sum by the area of a pixel in world coordinates to
obtain the volume of the supports. The process can be described
by the following equation:

V = Ap∑
Np

(

hBASE+hF
1 +

Dc−1

∑
i=0

hF
i+1−hB

i

)

(1)

In the above equation, V is the total volume of supports,Ap is the
area of a pixel,Np is the total number of pixels rendered,hBASE

is the height of the base layer,hF
i is the height of theith layer

of front-facing facets,Dc is the depth complexity, andhB
i is the

height of theith layer of the back-facing facets.
The complete algorithm is summarized in pseudo-code as

follows:

1. Calculate tight clipping planes.
2. Set up projection,camera parameters.
3. Render the 1st layer of front-facing facets

setting color=depth and store the z-buffer
in a depth texture.

4. Grow the rendered region by an amount
equal to the base offset and store the
color buffer in a floating point
texture HeightSum

5. n = 1;

4 Copyright c© 2006 by ASME



Figure 6. System set up during algorithm. The framebuffer contains the

discretized sum of the heights of the base and supports above each pixel.

while(true)
{

6. Render the (n+1)st layer of front-
facing facets with an occlusion query
and set stencil value for rendered
pixels equal to 1. Set color = depth
value. Copy depth buffer to the depth
texture.

7. Break if occlusion query returns zero.
8. Store color values in a floating point

texture FrontFaceHeights.
9. Render nth layer of back-facing facets

only for pixels rendered in 6 using
stencil test. Set color=depth.

10. Subtract the color value of every
fragment from the corresponding value
stored in FrontFaceHeights and add the
result to corresponding value in
HeightSum.

11. Render a viewport sized square with
stencil test such that fragments not
rendered in 9 are rendered. Set the
color value to the corresponding
value in HeightSum.

12. Store the result in HeightSum.
13 n++;

}
14 Sum all values in HeightSum

We find the clipping planes as discussed in the previous sec-
tion. We offset the near clipping plane by an amount equal to

the thickness of the base below the bottom-most layer so thatthe
distance from the near clip plane corresponds to the thickness
of the base. We then render the first layer of front-facing facets
(via standard z-buffer hidden surface removal). We use a vertex
program to replace the color of each vertex with its post-view-
transformation z-value so that we can use the full 32-bit floating
point precision of color buffers instead of the 24-bit precision of
the z-buffer. Figure 7(a) shows a sample 2D part and 7(b) shows
the first layer of front-facing facets. We copy the z-buffer to a
depth texture to be used later in depth peeling and copy the color
buffer to a floating point texture, call itHeightSum.

Thus,HeightSumcontains the projection of the whole bot-
tom surface of the part. The color value stored in each texel
location is equal to the sum of the height of the base layer and
the heights of supports that support the bottom surface. We then
offset the rendered region for a number of pixels in thex andy
direction respectively that is obtained by dividing the base off-
set distance by the length and the height of the pixel in world
coordinates. (Thex andy values may be different if the aspect
ratio of part projection is not 1 : 1 and if the GPU is limited to
using square depth/color textures.) In Figure 7, since the part
is two-dimensional and the frame-buffer is one dimensional, the
offset is only done in thex direction. For two dimensional frame-
buffers, we achieve this offset in multiple passes where forevery
pass, we grow the region by a pixel in directions in a fragment
program. Suppose the region needs to be grown bydx pixels in
thex direction anddy pixels in they direction withdx < dy. For
every fragment, we look up the color texture value at that frag-
ment’s location as well as the four fully adjacent pixel locations.
If the color value inHeightSumat the current fragment location
is zero and any one of the four adjacent texels is non-zero, we
set the color value of the current fragment equal to the thickness
of the base. This in effect offsets the region by one pixel on all
sides. We continue this fordx number of passes. After that, we
grow the region only in they direction fordy−dx passes. Thus
the color buffer contains the sum of the pixel-wise height ofthe
base and the bottom-most portion of supports (those connected to
the base) as shown for the sample part in in Figure 7(c). We store
the resulting color buffer in a floating point textureHeightSum.

We then initiate a loop that executes the following for every
n starting fromn = 1:

Note that at the starting point of the loop, we have a depth
texture created during the execution of the loop for the previous
value ofn. (For n=1, the depth texture is created while rendering
the first layer of front-facing facets as discussed previously.) We
also have a floating point color textureHeightSumthat stores the
cumulative sum of the heights of supports rendered at each pixel
up to this time. We render the(n+ 1)st layer of front-facing
facets by using Everitt’s two sided depth test [19] in a fragment
program as follows . We discard a fragment if its depth value is
less than or equal to the corresponding depth value stored inthe

5 Copyright c© 2006 by ASME



depth texture. Along with the usual z-test, this second depth test
peels off layers of facets that are in front of thenth layer of front-
facing facets, thus rendering the(n+ 1)st layer of front-facing
facets.

The color buffer now contains the projection of the(n+1)st

layer of front-facing facets as shown in Figure 7(d) forn = 1. If
there were no front-facing facets in this layer, the occlusion query
returns that zero pixels were rendered and we terminate the loop.
In practice, we use a vertex program to change the colors of ver-
tices to store their depth value. We also set the stencil bitsof
fragments rendered in this pass to one. We copy the rendered
color buffer into a floating point texture,FrontFaceHeights, and
copy the z-buffer into the depth texture to be used for depth peel-
ing for larger values ofn.

We then render thenth layer of back-facing facets, render-
ing only pixels with the stencil bit set to one. Thus in the ex-
ample in Figure 7, the portion of the first back-facing layer that
does not bound supports, in this case, namely that portion ofthe
first back-facing layer that is on the top face of the part is not
rendered. Figure 7(e) shows the facets rendered in this passfor
n = 1. Similar to the previous pass, we use a vertex program to
set the color value to store the depth value. Still restricted by the
stencil buffer, our fragment program subtracts the color value at
every fragment that holds the first layer of back back-face depths
from the value at that fragment’s location inFrontFaceHeights
(rendered in (c)), and add the result to the value stored inHeight-
Sum(rendered in (b)). This gives us the cumulative sum of the
heights of supports being rendered at each pixel as shown Figure
7(e).

Note that because of the stencil test, this fragment program
only updates fragments that have the corresponding stencilbits
set to one. Other fragments remain untouched even ifHeightSum
has non-zero values at their location. Due to the stencil test, only
the fragments occupied by the shaded rectangle in Figure 7(d) are
rendered in this pass. For the remaining fragments, values from
HeightSum(values obtained at Figure 7(b)) need to be copied to
the current color buffer. We render a viewport sized rectangle and
render fragments for which stencil bits are set to zero. We use a
fragment program to transfer values stored inHeightSumto the
color-buffer, giving us a buffer with a pixel-wise cumulative sum
of the height of all supports up to the(n+ 1)st layer of front-
facing facets as shown in Figure 7(f). Before incrementing the
value ofn and going back to the start of the loop, we copy the
buffer to HeightSum. The process continues until there are no
additional front-facing facet layers.

Finally, we find the sum of values stored inHeightSumby
using Kruger and Westerman’s multi-pass reduction technique
summarized below [20] .

For summing the values in anNxN texture, this algorithm
requires logN passes. For theith pass, we render a square of size
NixNi whereNi−1 is the size of the square rendered in the(i−1)th

pass,N0 = N, Ni = Ni−1/2. At every pixel location(i, j), we

Figure 7. Steps in algorithm (a) Part (b) First layer of front-facing facets

(c) Framebuffer after growing the region in b. (d) Second layer of front-

facing facets forming supports (e) First layer of back-facing facets is sub-

tracted from FrontFaceHeightsand added to HeightSum(f) Final color

buffer after copying the rest of HeightSum

use a fragment program that adds values in the texture storedat
locations(i, j), (i +Nn, j), (i +Nn, j +Nn) and(i, j +Nn). After
logN passes, the single pixel rendered contains the sum. Figure 8
shows a two dimensional texture and the pixels that are addedin
a single pass. We found that on our graphics card, using an offset
equal to half the size of texture is faster than using an offset of
1. In future, the offset should be selected by testing the relative
speed of two approaches on the available platform.

Figure 8. Four pixels are added at a time to reduce the size of a texture

to one-fourth of the original size

6 Copyright c© 2006 by ASME



The number of passes required to find the clipping plane is
constant and does not depend on the input. The number of passes
required for growing the base is equal tod, whered is equal to
the maximum ofdx anddy. The number of passes required for
the volume computation is equal to the depth complexity of the
part for a given viewing direction. We also require logN number
of passes for adding the values in the frame-buffer whereN is
the width of frame-buffer in pixels. The total number of passes
required for our algorithm isO(d + nk+ logN) whered is the
amount of the maximum base offset in pixels, n is the number
of facets, andk is the depth complexity. The time required for a
pass depends on the number of facets as well as the resolutionof
framebuffer. Figure 9 shows the effect of resolution on the tim-
ings for 4 different parts. For very low resolutions, the algorithm
misses a few depth layers due to coarse discretization reducing
the total time.

Results
We first tested our algorithm on several parts for which we

were able to compute the amount of support material needed an-
alytically because the volume of supports was known. For the
sake of comparison, we did not include the volume of the base
in these test parts. Table 1 provides the timings and accuracy
data for these test examples. All timings were measured on an
NVIDIA 6800 GO GPU and a 1.6 GHz Pentium M CPU with
512 MB RAM and 256 MB video RAM on a Mandrake Linux
operating system. We used a buffer size of 1024x1024 for all ex-
amples. There are three main sources of errors in our algorithm
as follows:

1. Errors due to triangulation: Input to our algorithm is a tri-
angulated boundary representation of the part. If the part
consists of curved surfaces, this approximation by planar
triangulation introduces errors in volume computation. We
postulate that if view-dependent triangulation as discussed
in [21] are used to limit the approximation error to less than
a pixel, the error due to triangulation will be minimized. The
computation of a view-dependent triangulation will increase
the running time. Thus, this approach may not be efficient
when the user is changing the build direction constantly.

2. Errors due to discretization: Triangles on the boundary rep-
resentation are discretized into fragments by the GPU. This
discretization introduces errors in the computation as the
area of the pixels rendered will not be exactly equal to the
actual area of the triangles.

3. Floating point error: GPU’s use a non-standard single preci-
sion floating point format. The volume computation is also
affected by the use of single precision instead of double pre-
cision.

We further tested our algorithm on a number of parts to de-
termine the speed of the algorithm for complex industrial parts.

Example Parts

Actual volume 12,000 10,079 83,553,885

GPU volume 11,906 10,020 82,799,800

Error .8 % .5 % .9 %

Table 1. TESTING ACCURACY OF OUT ALGORITHM ON A FEW

TEST PARTS

The graph in Figure 10 documents the time required for a num-
ber of example parts shown in Figure 12. We also measured the
time required for the support material volume computation in In-
sight, the commercial software for the FDM machine. Note that
Insight computes the volume of supports based on the tool paths
generated after the part is sliced. Even though this is not a fair
comparison as the software first slices the part and computesthe
tool-paths, this is the only commercially available way a designer
can find an estimation of the volume of support material required.
Thus, the timings shown in Figure 10 include the time required
for slicing the part and computing the tool path. Figure 11 shows
the effect of change in the number of triangles on the timingsfor
two different parts. Part 2 had a higher depth complexity than
part 1.

Conclusion
In this paper, we presented a GPU-based algorithm for com-

puting the volume of support material needed for manufacturing
a part in a given build direction. We have implemented our al-
gorithm and tested it on a number of test parts. Our algorithmis
99% accurate in all the examples that we have tested. The run-
ning time varies with the number of facets and the depth com-
plexity, but is less than a second for parts of up to 50,000 facets
and depth complexity up to 19. This is one to two orders of mag-
nitude faster that the commercial software, which must slice the
part first in order to estimate support volume.

REFERENCES
[1] Otto, K., and Wood, K., 2001.Product Design : Techniques

in reverse engineering and new product development. Pren-
tice Hall.

[2] Jacobs, P. F., 1993.Rapid Prototyping and Manufactur-
ing: Fundamentals of stereolithography. McGraw-Hill Inc,
New York, NY.

[3] Beaman, J. J., et al., 1997.Solid Freeform Fabrication : A

7 Copyright c© 2006 by ASME



Running time vs Resolution

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200
Width of framebuffer in pixels

S
ec

on
ds

410,798 Facets Depth,
Complexity = 6
55,254 Facets, Depth
Complexity = 15
38,088 Facets, Depth
Complexity=6
18,864 Facets, Depth
Complexity=3

Figure 9. Effect of increase in resolution on the timings

Software (Insight) vs GPU

0

10

20

30

40

50

60

70

80

90

100

0 20000 40000 60000
Number of Triangles

S
ec

on
ds

GPU
Software

Figure 10. Comparison of our algorithm and Insight software

New Direction in Manufacturing. Kluwer Academic Pub-
lishers, Dordrecht.

[4] Thompson, D., and Crawford, R., 1997. “Computa-
tional quality measires for evaluation of part orientationin
freeform fabrication”.Journal of Manufacturing Systems,

16(4), pp. 273–289.
[5] Asberg, B., Blanco, G., Bose, P., Garcia-Lopez, J., Over-

mars, M., Toussaint, G., Wilfong, G., and Zhu, B., 1997.
“Feasibility of design in stereolithography”.Algorithmica,
19(1-2), pp. 61–83.

8 Copyright c© 2006 by ASME



Speeds of Insight and GPU algorithm

-5

15

35

55

75

95

115

135

155

175

0 2000 4000 6000 8000 10000 12000 14000

Number of Facets

S
ec

on
ds

Insight Part 1
GPU Part 1
Insight Part 2
GPU Part 2

Figure 11. Comparison of our algorithm and Insight software for two parts with different resolution

Example Number Volume Depth Time in Time in
Part of Facets (mm3) Comp- Hardware Software

Orientation 1 lexity (sec) (sec)

1,252 32,674 2 .21 23

9,538 82,799,800 6 .16 5

18,864 15,645,100 10 .19 50

38,088 509,121 6 .42 59

55,254 880,998 8 15 90

Figure 12. PARTS USED FOR OUR COMPARISON WITH INSIGHT

[6] Allen, S. W., and Dutta, D., 1995. “Determination and evlu-
ation of support structures in layered manufacturing”.Jour-
nal of Design and Manufacturing,5, pp. 153–162.

[7] Majhi, J., Janardan, R., Schwerdt, J., and Smid, M., 1999.
“Minimizing support structures and trapped area in two-

dimensional layered manufacturing”.Computational ge-
ometry : Theory and Applications,12(3-4), p. 241.

[8] Majhi, J., Janardan, R., Smid, M., and Schwerdt, J., 1998.
“Multi-criteria geometric optimization problems in layered
manufacturing”. In Proceedings of the fourtneenth annual

9 Copyright c© 2006 by ASME



symposium on computational geometry, pp. 19–28.
[9] Agarwal, P., and Desikan, P., 2000. “Approximation algo-

rithms for layered manufacturing”. In Proceedings of the
eleventh annual ACM-SIAM symposium on discreet algo-
rithms, pp. 528–537.

[10] Cheng, W., Fuh, J. Y. H., Nee, A. Y. C., Wong, Y. S., and
Loh, H. T., 1995. “Multi-objective optimization of part-
building orientation in stereolithography”.Rapid Prototyp-
ing journal,1(4), pp. 12–33.

[11] Lan, P., Chou, S., Chen, L., and Gemmill, D., 1997. “De-
termination of fabrication orientations for rapid prototyping
with stereolithography apparatus”.Computer-Aided De-
sign,29(1), pp. 53–62.

[12] Frank, D., and Fadel, G., 1995. “Expert system-based se-
lection of the preferred direction of build for rapid prototyp-
ing processes”.Journal of Intelligent Manufacturing,6(5),
pp. 339–345.

[13] Saito, T., and Takahashi, T., 1991. “NC machining with G-
buffer method”.SIGGRAPH 91,25(4), July, pp. 207–16.

[14] Balasubramaniam, M., Laxmiprasad, P., Sarma, S., and
Shaikh, Z., 2000. “Generating 5-axis NC roughing paths di-
rectly from a tessellated representation”.Computer-Aided
Design,32(4), April, pp. 261–77.

[15] Spitz, S., Spyridi, A., and Requicha, A., 1999. “Accessi-
bility analysis for planning of dimensional inspection with
coordinate measuring machines”.IEEE Transactions on
Robotics and Automation, pp. 714–27.

[16] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,
Krger, J., Lefohn, A. E., and Purcell, T. J., 2005. “A survey
of general-purpose computation on graphics hardware”. In
Eurographics 2005, State of the Art Reports, pp. 21–51.

[17] Khardekar, R., Burton, G., and McMains, S., 2005. “Find-
ing feasible mold parting directions using graphics hard-
ware”. In Proceedings of the 2005 ACM Symposium on
Solid and Physical Modeling, pp. 233–243.

[18] Foley, van Dam, Feiner, and Hughes, 1997.Computer gra-
phucs : Principles and practice. Addison-Wesley, Reading,
MA.

[19] Everitt, C., 2002. Interactive order-independent trans-
parency. Tech. rep., NVIDIA corporation. See also URL
http://developer.nvidia.com.

[20] Kruger, J., and Westermann, R., 2003. “Linear algebra op-
erator for GPU implementation of numerical algorithms”.
ACM Transactions on Graphics,22(3), pp. 908–916.

[21] Khardekar, R., and Thompson, D., 2003. “Rendering
higher order finite element surfaces in hardware”. In
Proceedings of the 1st international conference on Com-
puter graphics and interactive techniques in Australasia and
South East Asia, pp. 211–219.

10 Copyright c© 2006 by ASME


