ASME 2006 International Design Engineering Technical Conf

Proceedings of IDETC/CIE 2006
erences &

Computers and Information in Engineering Conference

September 10-13, 2006, Philadelphia, USA

DETC2006-99666

FAST LAYERED MANUFACTURING SUPPORT VOLUME COMPUTATION ON G PUS

Rahul Khardekar
Department of Mechanical Engineering
University of California
Berkeley, CA 94720
Email: rahul@me.berkeley.edu

ABSTRACT

We present a GPU-accelerated algorithm for computing a
fast approximation of the volume of supports required fgelad
manufacturing in a given build direction, one criterionaftused
to choose a direction that requires less time and materiala |
sequence of rendering passes that project the part in thengiv
build direction, we use depth peeling to identify faces latug
supports. We exploit programmable graphics hardware to-com
pute the total height of all supports at each projected pliaed-
tion, scale the values by pixel area, and finally sum overiaH p
els to find the total volume of supports. For sample partetgst
our algorithm achieves ove®99% accuracy and running times
ranging from .2 seconds, for a part with 1,252 facets and ldept
complexity 2, to 1.86 seconds, for a part with 419,798 faants
depth complexity 9.

INTRODUCTION

Prototypes are often built during product design to demon-

strate a concept, to design tools or packaging, to analyze ma
ufacturability, or for testing stress or vibration resper the
product [1].
rapid prototyping processes that build 3-dimensional skdyy
depositing layers of raw material as illustrated in Figurd@ tiese
processes can quickly build a small number of prototypeb-wit
out any part specific tooling. Fused deposition modelingNGD
stereolithography and selective laser sintering are scwaeples
of layered manufacturing processes [2], [3].

*Address all correspondence to this author.

Layered manufacturing processes are a class of

Sara McMains *
Mechanical Engineering
University of California, Berkeley
Berkeley, California, 94720
mcmains@me.berkeley.edu

Build
Direction

Support

Material
Sliceq ~ Base
Part

Figure 1.
rial

(a) A sample part (b) Sliced part along with the support mate-

1
Part

Support
Structure

N

Basex

Build Platform

Figure 2. 2D schematic of part showing the support material holding up
overhanging features and attaching the part to the build platform

As a pre-processing step for layered manufacturing, a build
direction is chosen and the virtual model of the productices
by planes normal to that direction. The resulting slice oong
are then sent to a layered manufacturing machine where raw ma

Copyright (© 2006 by ASME

terial is deposited layer by layer to build the entire shapke
part is build on a build platform on which a thin base layer is
first deposited as shown in Figure 2. For many processes; addi
tional material is also needed to support overhanging gagme
as illustrated in Figure 2. Adding this support material aoty
increases the manufacturing time, it also has to be remoped u
completion, a process that can damage the part surface.gAlon
with the amount of support material, factors like the accyra
of important features, desired anisotropic strength priogeof

a part, the desired surface finish of the part, and the manufac
turing time also affect the choice of the build direction. thvi
respect to support material alone, an orientation miningjizhe
volume of support is optimal. But in most cases, the finalduil
direction is chosen by considering trade-offs betweerhalfac-
tors described above. If the metrics based on these faatoid ¢
be computed interactively while comparing build direcpthe
manufacturer could make an informed orientation choicee Th
fast computation of the volume metric is difficult becaus¢hef
high complexities of geometric algorithms involved in idi§n

ing faces needing supports; current commercial systemguatam
the volume of support after the slicing is completed by cotnpu
ing Boolean differences between adjacent layers. We pepos
to use the computational power of graphics processing fits
computing this volume.

Graphics Processing Units (GPUs) have recently evolved
into programmable processors capable of performing génera
purpose computational tasks. Figure 3 shows a schematatiay
of a modern GPU. Two programmable units, the Vertex Process-
ing Unit (VPU) and the Fragment Processing Unit (FPU), can
execute a user-defined set of instructions in place of a fired s
quence of geometric transformations, lighting (per vedper-
ations) and texturing operations (per-pixel operatio®cause
multiple vertices and pixels are processed in parallel, &Pah

In this paper, we propose a GPU-based algorithm for com-
puting the volume of support material needed for layeredunan
facturing in a given build direction. Our algorithm can countg
the volume of support material as the user changes the ggomet
as well as the build direction. We review the existing litera in
this area in the next section before describing the algoriimd
our results.

Previous work

Early work that looked at reducing support structure reguir
ments for layered manufacturing focused on finding an caient
tion that would entirely eliminate the need for a suppodature.
Thompson and Crawford propose a heuristic search method for
finding a build direction requiring no support [4]. Asbergadt
present arO(n) algorithm for determining if there is any orien-
tation in which a polygon or a polyhedron withvertices can be
built without supports [5].

Later work looked at minimizing the volume of support
structures. Allen and Dutta present an algorithm for “geter
ing optimal supports” for any polyhedron [6]. But Majhi et al
show that this algorithm, which essentially considers atitgc-
tions parallel and orthogonal to edges of the convex hulksdo
not always find an optimal solution, and furthermore thatape
proximation error cannot be bounded [7]. In 2D, Majhi et al.
present algorithms to find an orientation for a polygon that-m
imizes the contact length of the support/part interface #ned
support-structure area [7]. Their 3D algorithm for findingari-
entation that minimizes the analogous contact area andosupp
structure volume for a polyhedron are limiteddonvexpolyhe-
dra, however [8]. Agarwal and Desikan describe a more effi-
cient randomized approximation algorithm for solving tlaene
problem for convex polyhedra [9]. For the general case ofra no

achieve much higher computational speeds than convemhtiona convex polyhedron, they show that the set of build directithrat

CPUs. We show that GPUs can be very useful for the fast compu-

tation of geometric metrics for manufacturing such as thppsut
volume.

Geometryjr—» Per Ver.tex -»| Rasterizatio
Operations
Per Pixel
Framebuffer Operations —

Figure 3. Modern GPU architecture.

minimize the total area of faces that need support can have as
many asw(n*) connected components, suggesting that solving
the minimization problem for general polyhedra will be tdovs
for interactive feedback for all but the simplest input.
Researchers have also looked at the problem of finding opti-
mal build direction based on multiple criteria includingptirol-
ume of support material. Cheng et al. formulate a multiecidt
objective function that is evaluated over a set of candidatz-
tions to find an optimum [10]. This function considers fastor
like the number of surfaces perpendicular to the build diceg
the number of up-facing horizontal surfaces, the area obdse
surface and the volume of support material. Lan et al. [1&} pr
pose a similar approach where candidate directions amectésit
optimality with respect to either surface quality, buileh@, or the
number of sample points needing supports. Frank and Faggl [1
propose a rule based system for choosing the optimal buid or
entation with respect to the volume of support materialfasig
finish and tolerances.

Copyright © 2006 by ASME

Related work on GPUs consists of various applications of
graphics hardware to manufacturing and other general [zerpo
problems. Previously, the z-buffer of graphics cards hanbe
used to speed the solution of manufacturing problems such as
tool path planning [13], [14], and inspection [15]. The adive
of programmable GPUs has increased the use of GPUs for gen-
eral purpose computing tasks such as computational gegmetr
fluid simulations, database operations, and CAD [16]. Khard
ekar et al. used programmable GPUs to interactively detett a
display undercuts (for providing feedback to designersatp
to be molded or cast) [17]. The undercuts detected by this al-
gorithm are a subset of features that need supports in ldyere
manufacturing. These optimization algorithms could sSeancer
a larger search space in the same amount of time by using our
new volume computation algorithm.

Definitions and terminology

We will use the following standard graphics-oriented terms
As discussed earlier, modern GPUs contain two programmable
units, a VPU and a FPU. The VPU executes a user-defined pro-
gram called a “vertex program” for each vertex. A vertex pro-
gram can access vertex attributes such as the positionothe n
mal, the color, lighting parameters, and texture coordigatit
can also access a fixed system-dependent number of constant a
tributes and textures. The vertex program outputs the ctiter
texture coordinates and the transformed position for eactex.
After this stage, vertices are assembled to form triandiasdre
rasterized. During rasterization, triangles are subdigliohto po-
tential pixels called fragments; per-vertex attributestsas the
color and the texture coordinates are linearly interpalaieer
each triangle. The FPU then executes a user-defined “fragmen
program” for each fragment. A fragment program can access
the interpolated vertex attributes and textures storelénGPU
memory to determine the color and the depth value of each frag
ment. In modern GPUs, fragment programs can access full float
ing point textures (32 bits per color channel) as well as ldept
textures that store depth values instead of color valuesalllyj
fragments that pass a sequence of tests, including the artds
the stencil test, become pixels in the frame-buffer. In teadl
test, a user-defined reference value is compared with the=val
stored at the fragment’s location in a stencil buffer; tregfnent
is discarded if the test fails. In the z-test, the GPU comptre
depth value of each fragment with the value stored in theeeorr
sponding location in a (usually) 24-bit depth buffer, distag
fragments that fail the user-chosen comparison. An “odeius
query” returns the number of fragments rendered in the frame
buffer for a given rendering pass.

We also use the following FDM-related terms in our algo-
rithms. On an FDM machine, a platform is first built on which
the actual part rests as shown in Figure 5. This platformlis¢a
the “base.” The projected area of the base is slightly latigen

Viewport

™~ Only minimum (or maximum)
visible

]

F——

Dummy triangles

Triangles in the
part B-rep.

Figure 4. Dummy triangles are rendered instead of the primitives to find
the minimum or the maximum value of scalar functions defined over all
primitives.

the projected area of the part when projected on the base plan
We call the amount of offset applied to the boundary of the pro
jection of the part to find the boundary of the base the “bake of
set.” The overhanging surfaces that require supports andar
supported by the base are called “supported features.” titme s
of the volume of supports and the base gives us the total v®lum
of support material required.

We will now discuss of our algorithm for the volume com-
putation in detalil.

Volume computation

We assume that the input for our algorithm consists of the
build direction and a triangulated boundary representatiche
part. Before starting our algorithm, we carry out the follogy
initialization.

OpenGL Initialization

Before starting the main algorithm, we set the following
OpenGL rendering parameters. We first set the look-at pthet (
location at which the camera points) at the center of the-axis
aligned bounding box of the part (computed beforehand in the
original world-space coordinate system by recording thaimi
mum and the maximum value in each dimension while reading
in the part file). We place the eye-point (the location of thme
era) on the build direction outside the sphere bounding e a
aligned bounding box such that the camera is facing towérels t
bottom surface of the part that is deposited first by the lkeger
manufacturing machine, thus aligning the viewing direttfthe
direction from the eye-point to the look-at point) with theild
direction. Until we compute the exact clipping planes bdogd
the part, we set them such that they enclose the sphere circum
scribing the bounding box. For setting the near and far aligp
planes for the given viewing direction, we find the minimunaan
the maximum distance between the part and the plane normal to

Copyright © 2006 by ASME

the viewing direction containing the eye-point by using tble
lowing method. We assign a dummy triangle to each triangle
of the part and set the coordinates of the vertices of the dgmm
triangle such that all dummy triangles have the same shage an
size and are rendered at the exact same location when @dject
in the viewport, completely overlapping each other. Figdre
shows this process for two triangles. In actuality, these iy
triangles occupy a very small number of pixels in the vievtpor
For all three vertices of each dummy triangle, we compute the
minimum (respectively maximum) distance from the eye-poin
along the viewing direction in a vertex program and set the z-
coordinate value equal to the computed minimum (respdygtive
maximum). We also set the color value of each vertex equal
to the new z-value, because the color attributes can have ful
32-bit floating point precision instead of the 24-bit prémisof

the depth attribute. We set the z-test such that the trianile
minimum (respectively maximum) z-value is visible. We read
back the color value for one pixel where the dummy triangtes a
rendered to find the minimum (respectively maximum) distanc
from the eye-point.

For finding the left and the right clipping plane, we tem-
porarily set our eye-point on the x-axis of the view-coosd&
system defined by the viewing direction and the up-vectoe(a v
tor defined during defining the camera that defines the up-direc
tion in the eye coordinate system). We refer the reader tpffit8
the details of obtaining the x-axis in world coordinates. tfen
find the near and the far clipping plane from this new eye-poin
and set them as the right and the left clipping plane respsgti
Similarly, we find the top and the bottom clipping planes by se
ting the eye-point on the y-axis of the view-coordinate eyst

We will now discuss our support volume computation algo-
rithm.

a

0.1 The volume of support material

For computing the volume of support material for a given
orientation, we render the first layer of front-facing fescéwith
normals making an obtuse angle with the viewing directiorg a
store their z-values in a color buffer. This correspondshi® t

Second layer “““\\\\\
of front-facing ~~ First layer of
facets back-facing
Supports iy 7facets
First layer
of front-facing
facets
[~
=\
Base

T

Build direction

Figure 5. Example of a two dimensional part requiring supports

closed between the second layer of front-facing facets had t
portion of the first layer of back-facing facets where thaio-p
jections overlap. For every such pair of layers, we identifg
supports calculating a per-pixel cumulative sum of theagtise
between the layers, which is the height of the supports ateve
pixel. In the end, we add values stored at all pixel locatiamd
multiply the sum by the area of a pixel in world coordinates to
obtain the volume of the supports. The process can be describ
by the following equation:

1)

Dc—1
V = Apg <hBASE+ h'f + ; hiF+1 — h|B>
p 1=

In the above equation, V is the total volume of suppdktsis the
area of a pixelNp is the total number of pixels renderdukase
is the height of the base Iayeh{,: is the height of tha'" layer
of front-facing facetsD; is the depth complexity, ariu{3 is the
height of the'" layer of the back-facing facets.

The complete algorithm is summarized in pseudo-code as

height of any supports attached to the base. We then renderg)iows:

consecutive layers of front-facing facets (relative tot thaen-
tation) and back-facing facets by using a depth-peeling-tec
nigue that peels off unwanted layers of facets using the two-
sided depth test that we will discuss in detail below [19]. We
observe that supports are enclosed betweer(thel1)® layer

of front-facing facets and that portion of tm&" layer of back-
facing facets whose projection overlaps tfre+ 1)t layer of
front-facing facets. We use the stencil buffer to rendeydndse
portions of the back-facing facets that overlap the cowasp
ing layer of front-facing facets (to form supports). Figurel-
lustrates a two-dimensional example in which supports are e

4

1. Calculate tight clipping planes.

2. Set up projection,canera paraneters.

3. Render the 1st layer of front-facing facets
setting color=depth and store the z-buffer
in a depth texture.

4. Gow the rendered regi on by an anount
equal to the base offset and store the
color buffer in a floating point
texture Hei ght Sum

5. n =1,

Copyright © 2006 by ASME

Z : Part
Discretized

Supports
i

Height of
Supports

Discretized
base

/d

(I
Frame-buffer

storing the \/~

heights of
supports

z
|4L
X
Figure 6. System set up during algorithm. The framebuffer contains the
discretized sum of the heights of the base and supports above each pixel.

Viewing (projection)
Direction

whil e(true)
{

6. Render the (n+l)st layer of front-
facing facets with an occlusi on query
and set stencil value for rendered
pi xel s equal to 1. Set color = depth
val ue. Copy depth buffer to the depth
t exture.

Break if occlusion query returns zero.

8. Store color values in a floating point
texture Front FaceHei ghts.

9. Render nth layer of back-facing facets

only for pixels rendered in 6 using

stencil test. Set col or=depth.

Subtract the color value of every

fragnment fromthe correspondi ng val ue

stored in FrontFaceHei ghts and add the

result to corresponding value in

Hei ght Sum

Render a viewport sized square with

stencil test such that fragments not

rendered in 9 are rendered. Set the

col or value to the corresponding

val ue in Hei ght Sum

Store the result in HeightSum

n++;

N

10.

11.

12.
13

}

14 Sum all val ues in Hei ghtSum

the thickness of the base below the bottom-most layer sdtibat
distance from the near clip plane corresponds to the thigkne
of the base. We then render the first layer of front-facingftac
(via standard z-buffer hidden surface removal). We use texer
program to replace the color of each vertex with its postwie
transformation z-value so that we can use the full 32-bititga
point precision of color buffers instead of the 24-bit peéan of
the z-buffer. Figure 7(a) shows a sample 2D part and 7(b) show
the first layer of front-facing facets. We copy the z-bufferat
depth texture to be used later in depth peeling and copy tloe co
buffer to a floating point texture, call HeightSum

Thus,HeightSuncontains the projection of the whole bot-
tom surface of the part. The color value stored in each texel
location is equal to the sum of the height of the base layer and
the heights of supports that support the bottom surface.héie t
offset the rendered region for a number of pixels in xendy
direction respectively that is obtained by dividing the dadf-
set distance by the length and the height of the pixel in world
coordinates. (Th& andy values may be different if the aspect
ratio of part projection is not 1 : 1 and if the GPU is limited to
using square depth/color textures.) In Figure 7, since t¢ p
is two-dimensional and the frame-buffer is one dimensiota
offsetis only done in th& direction. For two dimensional frame-
buffers, we achieve this offset in multiple passes wherevtery
pass, we grow the region by a pixel in directions in a fragment
program. Suppose the region needs to be growdyyixels in
the x direction anddy pixels in they direction withdy < dy. For
every fragment, we look up the color texture value at thagfra
ment’s location as well as the four fully adjacent pixel lboas.
If the color value inHeightSumat the current fragment location
is zero and any one of the four adjacent texels is non-zero, we
set the color value of the current fragment equal to the tiésk
of the base. This in effect offsets the region by one pixellbn a
sides. We continue this fat, number of passes. After that, we
grow the region only in thg direction fordy — dy passes. Thus
the color buffer contains the sum of the pixel-wise heighthef
base and the bottom-most portion of supports (those coadént
the base) as shown for the sample part in in Figure 7(c). We sto
the resulting color buffer in a floating point texturgightSum

We then initiate a loop that executes the following for every
n starting fromn = 1:

Note that at the starting point of the loop, we have a depth
texture created during the execution of the loop for the ey
value ofn. (For n=1, the depth texture is created while rendering
the first layer of front-facing facets as discussed previougve
also have a floating point color texturightSunthat stores the
cumulative sum of the heights of supports rendered at eae pi
up to this time. We render thegn+ 1)t layer of front-facing
facets by using Everitt’s two sided depth test [19] in a fragin

We find the clipping planes as discussed in the previous sec- program as follows . We discard a fragment if its depth vatue i
tion. We offset the near clipping plane by an amount equal to less than or equal to the corresponding depth value storgein

5

Copyright © 2006 by ASME

depth texture. Along with the usual z-test, this second gt
peels off layers of facets that are in front of thié layer of front-
facing facets, thus rendering tiie + 1)t layer of front-facing
facets.

The color buffer now contains the projection of tfre+ 1)t
layer of front-facing facets as shown in Figure 7(d) fioe 1. If
there were no front-facing facets in this layer, the ocdasgjuery
returns that zero pixels were rendered and we terminatete |
In practice, we use a vertex program to change the colorsref ve
tices to store their depth value. We also set the stencildfits

fragments rendered in this pass to one. We copy the rendered os

color buffer into a floating point texturé&rontFaceHeightsand
copy the z-buffer into the depth texture to be used for depti-p
ing for larger values oh.

We then render the'" layer of back-facing facets, render-
ing only pixels with the stencil bit set to one. Thus in the ex-
ample in Figure 7, the portion of the first back-facing laywatt
does not bound supports, in this case, namely that portidmeof
first back-facing layer that is on the top face of the part is no
rendered. Figure 7(e) shows the facets rendered in thisfpass

1.0

1.0

Rest of _
HeightSum

(f)

n= 1. Similar to the previous pass, we use a vertex program to Figure 7. Steps in algorithm (a) Part (b) First layer of front-facing facets

set the color value to store the depth value. Still restuidig the
stencil buffer, our fragment program subtracts the colduneat
every fragment that holds the first layer of back back-faqalue
from the value at that fragment’s location fmontFaceHeights
(rendered in (c)), and add the result to the value storétkight-

Sum(rendered in (b)). This gives us the cumulative sum of the

heights of supports being rendered at each pixel as showmd-ig
7(e).

(c) Framebuffer after growing the region in b. (d) Second layer of front-
facing facets forming supports (e) First layer of back-facing facets is sub-
tracted from FrontFaceHeightand added to HeightSuni) Final color
buffer after copying the rest of HeightSum

use a fragment program that adds values in the texture s&red
locations(i, j), (i+Nn,), (i+Nn, j +Nn) and(i, j + Nn). After

Note that because of the stencil test, this fragment program logN passes, the single pixel rendered contains the sum. Figure 8

only updates fragments that have the corresponding stbitgil
set to one. Other fragments remain untouched eveleifhtSum
has non-zero values at their location. Due to the stendildesy

the fragments occupied by the shaded rectangle in Figujeréd
rendered in this pass. For the remaining fragments, valoas f

HeightSun{values obtained at Figure 7(b)) need to be copied to

the current color buffer. We render a viewport sized rectaagd
render fragments for which stencil bits are set to zero. \Weaus
fragment program to transfer values storedHieightSurnto the
color-buffer, giving us a buffer with a pixel-wise cumulaisum

of the height of all supports up to the + 1) layer of front-
facing facets as shown in Figure 7(f). Before incrementhng t
value ofn and going back to the start of the loop, we copy the
buffer to HeightSum The process continues until there are no
additional front-facing facet layers.

Finally, we find the sum of values stored iteightSurby
using Kruger and Westerman’s multi-pass reduction teaiq
summarized below [20] .

For summing the values in aXxN texture, this algorithm
requires lodN passes. For th&' pass, we render a square of size
NixN whereN;_1 is the size of the square rendered in the 1)th
pass,No = N, Ni = Ni_1/2. At every pixel location(i, j), we

shows a two dimensional texture and the pixels that are atded
a single pass. We found that on our graphics card, using aatoff
equal to half the size of texture is faster than using an bfife
1. In future, the offset should be selected by testing thetived
speed of two approaches on the available platform.

A
i,j+N/2 i+N/2,j+N/2
N 7 [
i i+N/2,j
v D
< N >

Figure 8. Four pixels are added at a time to reduce the size of a texture
to one-fourth of the original size

Copyright (© 2006 by ASME

The number of passes required to find the clipping plane is
constant and does not depend on the input. The number ofypasse
required for growing the base is equaldpwhered is equal to
the maximum ofdy anddy. The number of passes required for
the volume computation is equal to the depth complexity ef th

[N

Example Parts

part for a given viewing direction. We also require lgrumber Actual volume| 12,000 10,079 83,553,885
of passes for adding the values in the frame-buffer wihiie

the width of frame-buffer in pixels. The total number of pass GPU volume | 11,906 10,020 82,799,800
required for our algorithm i$(d + nk+ logN) whered is the Error 8% 5% 9%

amount of the maximum base offset in pixels, n is the number
of facets, andk is the depth complexity. The time required for a
pass depends on the number of facets as well as the resabifition
framebuffer. Figure 9 shows the effect of resolution on the t
ings for 4 different parts. For very low resolutions, theaithm
misses a few depth layers due to coarse discretization igluc
the total time.

Table 1. TESTING ACCURACY OF OUT ALGORITHM ON A FEW
TEST PARTS

The graph in Figure 10 documents the time required for a num-
ber of example parts shown in Figure 12. We also measured the
time required for the support material volume computatiomi
sight, the commercial software for the FDM machine. Noté tha
Results Insight computes the volume of supports based on the tobfpat
We first tested our algorithm on several parts for which we generated after the part is sliced. Even though this is nefra f
were able to compute the amount of support material needed an comparison as the software first slices the part and compges
alytically because the volume of supports was known. For the tgol-paths, this is the only commercially available way aigeer
sake of comparison, we did not include the volume of the base can find an estimation of the volume of support material neglii
in these test parts. Table 1 provides the timings and acgurac Thus, the timings shown in Figure 10 include the time reglire
data for these test examples. All timings were measured on an for slicing the part and computing the tool path. Figure 1dve

NVIDIA 6800 GO GPU and a 1.6 GHz Pentium M CPU with
512 MB RAM and 256 MB video RAM on a Mandrake Linux
operating system. We used a buffer size of 2224 for all ex-
amples. There are three main sources of errors in our atgorit
as follows:

1. Errors due to triangulation: Input to our algorithm is & tr
angulated boundary representation of the part. If the part
consists of curved surfaces, this approximation by planar
triangulation introduces errors in volume computation. We
postulate that if view-dependent triangulation as disedss
in [21] are used to limit the approximation error to less than
a pixel, the error due to triangulation will be minimized.&h
computation of a view-dependent triangulation will incgea
the running time. Thus, this approach may not be efficient
when the user is changing the build direction constantly.

. Errors due to discretization: Triangles on the boundapyr
resentation are discretized into fragments by the GPU. This
discretization introduces errors in the computation as the
area of the pixels rendered will not be exactly equal to the
actual area of the triangles.

. Floating point error: GPU’s use a non-standard singleipre
sion floating point format. The volume computation is also
affected by the use of single precision instead of double pre
cision.

We further tested our algorithm on a number of parts to de-
termine the speed of the algorithm for complex industriatpa

7

the effect of change in the number of triangles on the timfiogs
two different parts. Part 2 had a higher depth complexityntha
part 1.

Conclusion

In this paper, we presented a GPU-based algorithm for com-
puting the volume of support material needed for manufamgur
a part in a given build direction. We have implemented our al-
gorithm and tested it on a number of test parts. Our algorigm
99% accurate in all the examples that we have tested. The run-
ning time varies with the number of facets and the depth com-
plexity, but is less than a second for parts of up to 50,008téac
and depth complexity up to 19. This is one to two orders of mag-
nitude faster that the commercial software, which musedie
part first in order to estimate support volume.

REFERENCES

[1] Otto, K., and Wood, K., 200PProduct Design : Techniques
in reverse engineering and new product developniern-
tice Hall.

[2] Jacobs, P. F., 1993Rapid Prototyping and Manufactur-
ing: Fundamentals of stereolithographiyicGraw-Hill Inc,
New York, NY.

[3] Beaman, J. J., et al., 199%o0lid Freeform Fabrication : A

Copyright © 2006 by ASME

Running time vs Resolution

2.5 —— 410,798 Facets Depth,
Complexity = 6
—& - 55,254 Facets, Depth
Complexity = 15
2 - —A- 38,088 Facets, Depth
Complexity=6
—ll- 18,864 Facets, Depth
Complexity=3
»n 1.5
©
c
]
O
(]
n 1
0.5 A
0
0 200 400 600 . 800 1000 1200
Width of framebuffer in pixels
Figure 9. Effect of increase in resolution on the timings
100 Software (Insight) vs GPU
90 - p |
7
80 e
70 A //
7
2 60 1 - o
§ 50 4 - —— GPU
/ -
3 40 / —=- Software
30 A //
i~ /
20 N /
10 | /
0 N
0 1+ * > T —=
0 20000 40000 60000
Number of Triangles
Figure 10. Comparison of our algorithm and Insight software
New Direction in Manufacturing Kluwer Academic Pub- 16(4), pp. 273-289.
lishers, Dordrecht. [5] Asberg, B., Blanco, G., Bose, P., Garcia-Lopez, J., ©Over
[4] Thompson, D., and Crawford, R., 1997. *“Computa- mars, M., Toussaint, G., Wilfong, G., and Zhu, B., 1997.
tional quality measires for evaluation of part orientation “Feasibility of design in stereolithographyAlgorithmica,
freeform fabrication”. Journal of Manufacturing Systems, 19(1-2), pp. 61-83.

8 Copyright © 2006 by ASME

Speeds of Insight and GPU algorithm

175
155 7 — - Insight Part 1 /’/‘
-m- GPU Part 1
135 4 —— |nsight Part 2
—=- GPU Part 2
115 -
()]
2 95
Q
o
" 75
55
35 +
15 4 -
® 0 2000 4000 6000 8000 10000 12000 14000
Number of Facets
Figure 11. Comparison of our algorithm and Insight software for two parts with different resolution
Example| Number | Volume Depth | Timein Time in
Part of Facets| (mn?) Comp- | Hardware| Software
Orientation 1| lexity | (sec) (sec)
@
: 1,252 32,674 2 21 23
l 9,538 82,799,800 | 6 .16 5
’-—’ 18,864 15,645,100 | 10 19 50
= 38,088 509,121 6 42 59
)
'J/i 55,254 880,998 8 15 90
Figure 12. PARTS USED FOR OUR COMPARISON WITH INSIGHT

[6] Allen, S. W., and Dutta, D., 1995. “Determination andwev!
ation of support structures in layered manufacturirdgur-
nal of Design and Manufacturing, pp. 153-162.

[7] Majhi, J., Janardan, R., Schwerdt, J., and Smid, M., 1999
“Minimizing support structures and trapped area in two-

dimensional layered manufacturing'”Computational ge-
ometry : Theory and Application$2(3-4), p. 241.

[8] Majhi, J., Janardan, R., Smid, M., and Schwerdt, J., 1998
“Multi-criteria geometric optimization problems in laysst
manufacturing”. In Proceedings of the fourtneenth annual

Copyright © 2006 by ASME

symposium on computational geometry, pp. 19-28.

[9] Agarwal, P., and Desikan, P., 2000. “Approximation algo
rithms for layered manufacturing”. In Proceedings of the
eleventh annual ACM-SIAM symposium on discreet algo-
rithms, pp. 528-537.

[10] Cheng, W., Fuh, J. Y. H., Nee, A. Y. C., Wong, Y. S., and
Loh, H. T., 1995. “Multi-objective optimization of part-
building orientation in stereolithographyRapid Prototyp-
ing journal, 1(4), pp. 12-33.

[11] Lan, P., Chou, S., Chen, L., and Gemmill, D., 1997. “De-
termination of fabrication orientations for rapid protptgg
with stereolithography apparatus”Computer-Aided De-
sign,29(1), pp. 53-62.

[12] Frank, D., and Fadel, G., 1995. “Expert system-based se
lection of the preferred direction of build for rapid progpt
ing processes”Journal of Intelligent Manufacturingy(5),
pp. 339-345.

[13] Saito, T., and Takahashi, T., 1991. “NC machining with G
buffer method”.SIGGRAPH 9125(4), July, pp. 207-16.

[14] Balasubramaniam, M., Laxmiprasad, P., Sarma, S., and
Shaikh, Z., 2000. “Generating 5-axis NC roughing paths di-
rectly from a tessellated representatioitComputer-Aided
Design,32(4), April, pp. 261-77.

[15] Spitz, S., Spyridi, A., and Requicha, A., 1999. “Acdess
bility analysis for planning of dimensional inspection it
coordinate measuring machineslEEE Transactions on
Robotics and Automatiopp. 714-27.

[16] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,
Krger, J., Lefohn, A. E., and Purcell, T. J., 2005. “A survey
of general-purpose computation on graphics hardware”. In
Eurographics 2005, State of the Art Reports, pp. 21-51.

[17] Khardekar, R., Burton, G., and McMains, S., 2005. “Find
ing feasible mold parting directions using graphics hard-
ware”. In Proceedings of the 2005 ACM Symposium on
Solid and Physical Modeling, pp. 233—-243.

[18] Foley, van Dam, Feiner, and Hughes, 19@dmputer gra-
phucs: Principles and practicéddison-Wesley, Reading,
MA.

[19] Everitt, C., 2002. Interactive order-independennga
parency. Tech. rep., NVIDIA corporation. See also URL
http://developer.nvidia.com.

[20] Kruger, J., and Westermann, R., 2003. “Linear algelpra o
erator for GPU implementation of numerical algorithms”.
ACM Transactions on Graphicg2(3), pp. 908-916.

[21] Khardekar, R., and Thompson, D., 2003. “Rendering
higher order finite element surfaces in hardware”. In
Proceedings of the 1st international conference on Com-
puter graphics and interactive techniques in Australasia a
South East Asia, pp. 211-219.

10

Copyright (© 2006 by ASME

