
Finding mold removal directions using graphics hardware

Rahul Khardekar∗

University of California, Berkeley
Sara McMains †

University of California, Berkeley

1 Introduction

In molding and casting manufacturing processes, molten raw ma-
terial is shaped in molds from which the resulting part must be re-
moved after solidification. We consider two part, rigid molds in
which the mold halves are separated in opposite directions (the pos-
itive and negative casting directions). For a part to be castable in
a given direction, it should be free from undercut features which
make it impossible to separate the mold halves from the part when
translated along the casting directions without colliding with the
part. We propose the use of programmable graphics hardware to test
the castability and facilitate computer aided design of such parts.

2 Determining castability in a direction

A part is castable in a given direction if and only if, when projected
orthographically on a plane normal to that direction, there is no
overlap between faces whose normals subtend an angle less than
90◦ with the positive casting direction. (For all the tests described
below, we use orthographic projection.) In our two pass castability
algorithm, we place the eye point above the part along the positive
casting direction. In the first pass, we render the front faces. In
the second pass, we zero the frame buffer but keep the old z-buffer,
setting the depth test function so that only the front faces invisible
in the first pass are rendered. The part is castable if and only if no
pixels are rendered in the second pass, which we check using an
occlusion query.

We then use depth textures to highlight the (portions of) faces that
are not castable in the given direction so that the designer can make
the necessary changes to the part geometry. Our approach is anal-
ogous to using shadow mapping to display (portions of) faces in
shadow when the object is illuminated by two lights located at in-
finity in the positive and negative casting directions. We generate
two depth textures by rendering the part looking at it from the pos-
itive and negative casting directions. We then use a vertex pro-
gram to transform each polygon by the viewing transform for the
two casting directions in turn, followed by a fragment program to
check if the transformed depths for each fragment are greater than
the depth values stored in the respective depth textures. If both are
greater, we highlight that fragment to indicate to the designer that
there is an undercut on that section of the surface.

Figure 1: Sample parts with undercuts highlighted in dark red. The
casting direction is vertical for both the parts.

∗rahul@me.berkeley.edu
†mcmains@me.berkeley.edu

3 Determining multiple castable directions

During the detail design stage for a molded or casted part, the cast-
ing direction needs to be known a priori (in order to taper vertical
facets for mold releasability, add bosses and ribs for rigidity, etc.).
Thus the above algorithm is appropriate for interactive inspection
of castability during detail design. During conceptual design, how-
ever, we would like to be able to generate multiple feasible casting
directions for a given part geometry. To do so efficiently, we make
use of a theoretical result by [Ahn et al. 2002] which proves that
all combinatorially distinct casting directions correspond to cells in
an arrangement of great circles on a Gaussian sphere. Every face
normal and normal of the triangle formed by every edge-vertex pair
of the part generates a great circle in the arrangement. These great
circles correspond to the directions where a part face changes from
front-facing to back-facing (directions contained in the plane of the
face), and directions where a projection of one part face potentially
changes from occluding to not occluding (or vice versa) another
part face (directions contained in the planes through an edge-vertex
pair from each). We reduce the number of great circles by merging
adjacent coplanar faces and omitting redundant and non-interacting
edge-vertex pairs. We project the remaining great circles on a plane
tangent to the sphere to obtain an arrangement of lines. We subdi-
vide the line arrangement in a quad-tree to obtain a small number
of lines per quad-tree leaf node. We then construct the arrange-
ment in each leaf node by rendering a half-space for each line with
a different color, blending the colors in the frame buffer. We select
a random sequence of 1,024 pixel locations in each leaf node and
select the points having different colors (corresponding to distinct
cells in the arrangement). The directions corresponding to these
points, along with face normal and axis directions (which are good
heuristic candidates), are tested for castability using the algorithm
presented in Section 2.

4 Results

Both algorithms were tested on sample parts, including those pic-
tured in the figure, using a QuadroFX 3000 GPU. The two pass al-
gorithm obtained speeds in the range of 18,200 to 1,040 directions
per second for the parts pictured, with 40 to 20,676 faces respec-
tively. This is a speed up of 200 times as compared to running the
same algorithm on a GeForce2 GPU where the CPU (Athlon 1.8
GHz) did the rendering, but this is not a fair comparison since a
different implementation would probably be more efficient on the
CPU. The algorithm for finding multiple feasible directions took
0.42 seconds for a part with 28 faces in which 1,497 different can-
didate directions were tested. For a part with 328 faces, it took 2
minutes 18 seconds in which 491,010 directions were tested. Please
refer to http://kingkong.me.berkeley.edu/~rahul/gpgpu/
index.html for more details about the results.

References

AHN, H.-K., DE BERG, M., BOSE, P., CHENG, S.-W.,
HALPERIN, D., MATOUŠEK, J., AND SCHWARZKOPF, O.
2002. Separating an object from its cast. Computer - Aided
Design 34, 547–559.


