
204

Conference Abstracts and Applications
Sketches & Applications

Efficient Out-of-Core Build of a Topological Data Structure
226

Sara McMains
Carlo Séquin
University of California, Berkeley
sara@cs.berkeley.edu

Many solid modeling applications require information not only about
the geometry of an object but also about its “topology,” the connectiv-
ity of its faces, edges, and vertices. Many interchange formats do not
provide this information; therefore, the application must derive it as
it builds its own topological data structure from an unorganized list of
triangles. For very large datasets, the data structure itself can be bigger
than core memory, and a naive algorithm for building it can become
prohibitively slow due to memory thrashing. In this sketch, we describe
a new out-of-core algorithm that can build our topological data struc-
ture, LEDS (the Loop Edge-Use Data Structure), which closely related
to Weiler's radial edge data structure,1 from very large datasets.

To determine connectivity relationships, we use hash tables to match
up all coincident vertex coordinates and edge-uses. One possible
approach is to build these hash tables and construct and update the
LEDS as the input is read. Unfortunately, for a large file, each new
element read could be connected to elements that have already been
written out to disk, and those elements will now need to be paged
back in to be updated. Even if the input is extremely coherent, so that
updates to the same element are closely spaced in time, we will still
see thrashing when the hash tables become too large to co-exist in
memory. The problem of random update accesses is also encountered
in bulk loading object-oriented databases; Wiener's algorithm in this
domain2 inspired our approach.

Our algorithm for non-memory-resident data avoids thrashing in two
ways: by re-ordering and grouping random hash-table accesses, so
that we need to build and access only one memory-sized partition of

a single larger hash table at a time, and by using external merge-sorts
to re-order the intermediate data generated using the hash tables.
This allows us to write all of the information that needs to be recorded
in each entity at creation time, and we never need to go back and
modify entities that have already been written out to disk. Our only
out-of-order accesses are within the in-memory hash table partitions
and during the sorting stage.

For testing, we took a simple curved shape and varied the fineness of
the triangulation to produce files of different sizes (Figure 1). To extract
the effects of input coherency, we made two versions of each file: one
with the triangles organized in consecutive triangle strips, and one with
the same triangles in random order. Running on an SGI Indy with 32M
of RAM, the naíve approach is efficient for building a small memory-
resident LEDS, with identical performance on random and coherent
input. For larger files, however, performance degrades rapidly due to
thrashing, particularly for the random files. For small files that fit in
memory, the out-of-core algorithm takes approximately 20% longer
to build the LEDS than the naive algorithm, but the intelligent use of
virtual memory more than makes up for this overhead on larger files
(Figure 2). The out-of-core algorithm we present makes building a very
large topological data structure feasible, regardless of the coherence
of the input.

References
1. Weiler, K. (1988). The radial edge structure: A topological representation for non-man-

ifold geometric boundary modeling. Geometric Modeling for CAD Applications, 3-36.

2. Wiener, J.L. & Naughton, J.F. (1995). OODB bulk loading revisited: The partitioned-list
approach. Proc. of the 21st International Conference on Very Large Data Bases, 30-4.

Figure 1: Our test part, coarsely tesselated

to show triangle-strip organization.

Figure 2: Naíve vs. out-of-core build times for the test part

triangulated at various resolutions. Note that the results

for the out-of-core algorithm on the coherent and ran-

domly ordered versions of the input are coincident.

