
6th ACM Symposium on Solid Modeling and Applications, to appear June, 2001

Out-of-Core Build of a Topological Data Structure from Polygon Soup

Sara McMains Joseph M. Hellerstein Carlo H. Séquin
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Abstract
Many solid modeling applications require information not only
about the geometry of an object but also about its topology. Most
interchange formats do not provide this information, which the ap-
plication must then derive as it builds its own topological data struc-
ture from unordered, “polygon soup” input. For very large data sets,
the topological data structure itself can be bigger than core mem-
ory, so that a naive algorithm for building it that doesn’t take virtual
memory access patterns into account can become prohibitively slow
due to thrashing. In this paper, we describe a new out-of-core al-
gorithm that can build a topological data structure efficiently from
very large data sets, improving performance by two orders of mag-
nitude over a naive approach.

1 Introduction
The topology of a boundary representation (b-rep) – the connectiv-
ity of its faces, edges, and vertices – is as important as its geometry
for many applications. This connectivity information can be used
for operations ranging from computing offset surfaces, to calcu-
lating vertex normals for smooth shading, to mesh simplification.
Many data exchange formats that describe b-reps only specify the
geometry of the boundary, leaving it up to the application to dis-
cover the connectivity. Such an unordered b-rep describing faceted
geometry is colloquially referred to as “polygon soup.”

For a small model that fits easily in memory, it is efficient for
the application to build up its own topological data structure by in-
crementally updating it for each new polygon in the input. This
naive approach is disastrous, however, for very large data sets, such
as those produced from laser-range finder scanned 3-D input (see
the Digital Michelangelo Project [15] for examples of enormous
geometric data sets containing as many as two billion polygons de-
scribing a single object). When our data structures no longer fit in
core memory, we need to use different techniques to avoid access-
ing virtual memory randomly.

We introduce a new out-of-core algorithm that can build a topo-
logical data structure efficiently even from very large, unorganized
data sets. Our implementation takes “triangle soup” in STL format
[1] as input. This is the de facto standard interchange format for
solid freeform fabrication, a class of technologies used to manufac-
ture complex 3D geometries by building them up in layers [4]. Our
algorithm builds a Loop Edge-use Data Structure (LEDS) represen-
tation, a topological data structure closely related to Weiler’s radial
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edge structure [26]. The principles of the algorithm, however, are
applicable with any faceted input and any topological data structure.
For comparison, we also describe the design and implementation
of an in-memory algorithm that builds the LEDS efficiently from
small STL files, but thrashes when input files are large compared to
available memory.

2 Previous Work

2.1 Topological Data Structures

The data structure that we build is closely related to Weiler’s radial
edge structure [26]. The radial edge structure is a generalization of
Baumgart’s winged edge data structure [3] to non-manifold geome-
try. These data structures allow us to answer questions about topo-
logical adjacency relationships, e.g. the faces incident to an edge,
often either in constant time or in time proportional to the size of
the output set. Weiler’s data structure also records the radial order-
ing of faces around non-manifold edges (hence its name). Another
important concept from Weiler’s work is the distinction between an
abstract, unoriented geometric element, such as an edge, and an ori-
ented use of that element, such as a directed edge-use that describes
part of the boundary of a face. Other variations on these data struc-
tures include Mäntylä’s half-edge data structure [16], which is lim-
ited to 2-manifolds, Rock and Wozny’s topological data structure
for STL [19], also limited to 2-manifolds, and the data structure
that ACIS modelers build and exchange in .sat files [21]. Another
important non-manifold representation forms the basis for the Noo-
dles system developed by Gursoz, et al. [12]. Guibas and Stolfi’s
quad-edge data structure [11] is limited to 2-manifolds but can si-
multaneously represent the topology of an object and its dual.

2.2 Out-of-Core Algorithms

Numerous out-of-core techniques have been developed for other
geometric applications. In the graphics domain, these applica-
tions include large building walk-throughs, radiosity, and ray trac-
ing [9, 23, 18]. In the visualization domain, several researchers
have addressed out-of-core isosurface extraction [6, 5, 22, 2]; oth-
ers have looked at visualization of terrain and computational fluid
dynamics, including streamlines on meshes [8, 7, 24].

Although our input is geometric, the problem of updating con-
nectivity pointers in a topological data structure actually has a
closer analogy in building object oriented databases (OODBs). In
these databases, the presence of inverse relationships means that
inserting one object in the database requires the system to update
all of its inverses, which must point back to it, as well. Wiener
and Naughton have proposed a solution for efficient bulk-loading
of OODBs [27] that provides the inspiration for our approach. The
major insight in their work was that the inverse relationship up-
dates can be reformulated as analogues of database “join” opera-
tions. These can be resolved efficiently for very large data sets us-
ing “partitioned hash join” algorithms [10]. These algorithms build,
one at a time, memory-sized pieces of a larger hash table, in order
to avoid memory thrashing.
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3 Data Representations
Our algorithm reads input in the STL format, a boundary represen-
tation that consists of a simple list of triangular facets. The vertex
coordinates are specified explicitly for each triangle in which the
vertex appears. The vertices are enumerated in counter clockwise
order as seen from the exterior of the part. In addition, for each
triangle, a redundant surface normal that points to the exterior of
the part is specified. An example of an STL triangle specification is
shown in Figure 1.

facet normal 0.319565 -0.175219 -0.931222
outer loop

vertex 2.410370 -7.779990 -8.411049
vertex 2.407310 -9.749799 -8.050910
vertex 2.229340 -9.927230 -8.628259

endloop
endfacet

Figure 1: An STL triangle.

Our algorithm constructs a Loop Edge-use Data Structure
(LEDS) describing the topology (connectivity) of the STL input.
LEDS supports all bounded, rigid solids, or r-sets [25], including
not only 2-manifold solids but also the subset of non-manifold ge-
ometry that corresponds to physically realizable solid objects, such
as the one pictured in Figure 2. On such objects, the neighborhood
of each point on the boundary is topologically equivalent to n 2D
disks, n ≥ 1, and each edge in the b-rep is used an equal number
of times in both directions.

Figure 2: A non-manifold part that is a valid solid.

In the LEDS, we have stripped away some of the overhead,
which we don’t require for solid freeform fabrication applications,
from Weiler’s radial edge structure. Weiler separates undirected
loops or faces from directed face-uses and loop-uses, allowing the
same face to be referenced from both sides where it forms a mem-
brane between cells, for example. We only represent the actual
directed face-uses and loop-uses, since a single face or loop is un-
likely to be used more than once in solid freeform fabrication file
descriptions. For simplicity, we will refer to face-uses and loop-
uses as faces and loops in the rest of this paper.

Each face (see Table 1) is defined by one counter-clockwise,
outer loop and a (possibly empty) list of clockwise, inner hole
loops. For triangulated STL input, we will have no inner hole
loops in the input geometry. Loops are represented implicitly in
the LEDS: in a face, we store a loop simply as a pointer to an arbi-
trarily chosen edge-use in that loop. Each edge-use stores a pointer
to the next edge-use in the loop; we follow these pointers to traverse
the loop.

FACE
EDGE USE * First Outer Loop Edge Use
List<EDGE USE *> Inner Loop List

Table 1: The connectivity data stored with a LEDS face.

Each edge-use in the loop points back to the face whose bound-
ary it helps to define (see Table 2). To make edge-uses compact, we

store only one vertex pointer with each edge-use, a pointer to the
root vertex (the vertex from which the edge-use is directed away).
The vertex on the other end can be found by following the pointer to
the next edge-use in the loop and getting its root vertex. While we
represent each edge-use explicitly, the abstract, undirected edges
are represented implicitly by circular lists of edge-uses sharing the
same endpoints, linked by “sibling edge-use” pointers stored with
each edge-use.

The LEDS also records a separate edge list that contains point-
ers to these implicit edges, storing each as a pointer to one arbitrar-
ily chosen edge-use in the linked list of sibling edge-uses for the
edge. This allows an application to iterate through all the edges ef-
ficiently, without visiting each edge-use. The LEDS also stores lists
of its faces, vertices, and edge-uses to support adding and deleting
geometry after the initial input is read.

EDGE-USE
FACE * Face
VERTEX * Root Vertex
EDGE USE * Next In Loop Edge Use
EDGE USE * Sibling Edge Use
EDGE USE * Next Vertex Edge Use

Table 2: The connectivity data stored with a LEDS edge-use.

An important feature of this data structure is constant space stor-
age for each vertex and for each edge-use. Rather than storing a
variable length list of all of the edge-uses incident to a vertex with
the vertex, we chain together all of the vertex’s edge-uses into a cir-
cular linked list (in arbitrary order) via the Next Vertex Edge Use
field in the edge-uses. The vertex contains a pointer to any one of
the edge-uses in this circular list (the First Vertex Edge Use field
in Table 3). The combination of these pointers allows us to iterate
through all of the vertex’s edge-uses, even at non-manifold vertices.

VERTEX
float[4] Coordinate
EDGE USE * First Vertex Edge Use

Table 3: The position and connectivity data stored with a LEDS
vertex.

For representing STL input, the space usage for each face is also
constant since the faces have no inner hole loops. Constant space
storage is important for allocating memory efficiently; it allows us
to pre-allocate storage in arrays.

4 Hashing
To build a LEDS from unorganized STL input, we use hash tables
in both our in-memory algorithm and our out-of-core algorithm.
Since STL doesn’t provide vertex identifiers, we use a vertex hash
table to match up coincident vertex coordinates. To determine the
edge connectivity, we use an edge hash table to match up edge-uses
with their coincident siblings.

For the vertex hash tables, we use the x,y,z coordinate triple as
the input to the hash function. In addition to the input value (the
hash key), we store (as the hash data) a pointer to the LEDS ver-
tex for the in-memory algorithm; for the out-of-core algorithm, we
store the vertex’s index in the final LEDS vertex array (as explained
in section 7). The pointers and indices are both 32 bits; thus both
algorithms’ vertex hash table entries are the same size.

In the edge hash tables, in order to match an edge-use with its
sibling(s) which may be oriented in the opposite direction, we want
the hash function to return the same value regardless of the order of
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the edge-use’s endpoints. We accomplish this by ordering the end-
points lexicographically, and use this ordered pair as the input key
to our hash function, which also allows us to use a standard equality
check. We don’t use the coordinate triples of the endpoints, how-
ever, but rather the endpoints’ data values from the hash table, since
these are one third the size. Again, the hash table keys are the same
size for both algorithms, though they are different keys. For the
in-memory algorithm, the edge hash table will record a pointer to
a single edge-use in its data field, but for the out-of-core algorithm
the edge hash table will record up to two array indices of LEDS
edge-uses in its data field, as described in the sections on the re-
spective algorithms. Thus the in-memory algorithm’s edge hash
table entries will be smaller.

We chose our hash functions both to be quick to compute and
to minimize collisions in the hash table. Integer computations are
faster than floating point computations, so our hash function treats
the 32 bits that represent each normalized floating point coordinate
as a 32 bit integer. As part of satisfying the second goal of mini-
mizing collisions, we use all three coordinates and both endpoints
as input to our hash function, so that we won’t get additional vertex
collisions for files that have many vertices with the same height,
for example, or additional edge-use collisions for files with vertices
of high valence. We can merely add the two values together in
the case of edge-use hashing because we want edge-uses in either
direction to hash to the same value. For vertices, however, we mul-
tiply the three values by different numbers before adding them up
to avoid collisions between permutations of the same coordinates,
which could be an issue for symmetrical parts. We use identical
hash functions for the in-memory and out-of-core algorithms.

We address collisions in our hash tables by using open address-
ing and double hashing to find an empty slot. (Open address-
ing means that if an input value hashes to a position that has al-
ready been used for another value, rather than “chaining” together
a linked list of multiple entries for that position, we follow a probe
sequence until we find an empty slot. Double hashing is a tech-
nique for choosing this probe sequence using a second hash func-
tion to choose an offset value. See [14].) Once a hash table is
very full, its performance degrades drastically, as we must search
a longer and longer probe sequence to find an empty slot. When
a hash table is filled to 80% capacity, the total number of misses
will be roughly equal to the total number of hits; at this time we
rehash in a new hash table that is twice the size (“rounded” up to
the next prime number, of course) to improve the hit rate. In gen-
eral, a larger hash table will give better performance at the expense
of using more memory. We feel that rehashing at 80% full is a
reasonable time/space tradeoff.

5 Test Files and Platform
To examine the effects of file size on performance, we timed the
performance of our algorithm implementations on a series of files
that approximate the same ideal geometry. Our canonical “knot”
test part, shown in Figure 3, is output from Séquin’s sculpture gen-
erator [20]. We varied the fineness of the tesselation to produce
different sized files containing 10,000 to 1,000,000 triangles.

All of the triangles in these test files are organized into consecu-
tive rings of triangle strips, output in the same order that they adjoin
in the part. As such, they exhibit near ideal topological coherence.
For triangles on each strip, two of the triangle’s three neighbors will
be in the same strip and immediately adjacent to it in the file, and its
third neighbor will be in the adjacent strip. Because of this topolog-
ical coherence in the input, even a naive in-memory algorithm that
updates the connectivity as it reads in each triangle should not have
thrashing problems within the LEDS. To extract the effects of input
coherency, we also made another version of each tesselated knot
input file that contained the same triangles but in random order.

We ran our tests on a dual processor PC with two Pentium III

Figure 3: The canonical triangulated knot test part. The version
shown here has only 4,800 triangles so that the organization of
the triangle strips into adjacent stories is clearly visible. Versions
of the part with more triangles have both more stories and more
triangles per story.

700 MHz processors and 1 GB of virtual memory. Using Linux,
we booted the machine with only 32 MB RAM to demonstrate how
performance is affected when the total space requirements are many
times the size of available memory.

6 In-Memory Algorithm
For an in-memory build, we construct and update the LEDS as we
read each new triangle from the input. We allocate a new LEDS face
and three LEDS edge-uses for each triangle. We can immediately
set pointers from the edge-uses to this face, from each edge-use to
the next edge-use in the loop, and from the face to its first edge-
use. The vertex and sibling pointers, however, require hash table
lookups.

We look up each coordinate triple in the input file in the vertex
hash table, so that we know whether it refers to a new vertex that
needs to be initialized, or to an existing vertex to which we need to
“add” edge-uses. In the first case, we allocate a new vertex, initial-
ize its coordinates, and set its first edge-use to be the edge-use in
the current triangle rooted at this vertex. Then we record a pointer
to this new vertex in the hash table. In the second case, we don’t
need to allocate a new vertex or update the hash table, but we do
need to add the edge-use rooted at this vertex to the circular list of
edge-uses for the vertex. We insert it after the first edge-use for the
vertex, which only requires looking up and updating one existing
LEDS element (the vertex’s first edge-use).

After we know the addresses of the three LEDS vertices, we can
look up the three edge-uses in the edge hash table. As mentioned
above, we use the lexicographically ordered addresses of their end-
points as the hash key. If it is the first edge-use processed for the
edge, we add it to the linked list of all edges and record its address
in the data field of the hash table entry. Otherwise, we add it to the
circular list of sibling edge-uses by inserting it after the edge-use
stored in the hash table. Again, we need only look up and update
one existing LEDS element.

For a one-pass algorithm, we cannot allocate the LEDS elements
in the correct size arrays ahead of time, since ASCII STL contains
no information at the start of the file about the number of triangles,
vertices, or edges. We use the approach of allocating the arrays in
buffers of 256 LEDS vertices, edge-uses, or faces, and allocating
additional buffers as the existing ones fill up.

The running times for this in-memory algorithm on the knot
sculpture test files are shown in Figure 4. Each data point is the
average of five trials. For small files with up to 70,000 triangles,
the running times grow linearly and are identical for the coherent
and randomly ordered files. For medium sized files between 70,000
to 200,000 triangles, the running times continued to grow linearly
for coherent input because there was enough room in memory to
hold both the hash tables and the active portion of the LEDS. For
the randomly ordered files of this size, however, the random ac-
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cesses to both the LEDS and the hash tables caused thrashing and
the performance worsens considerably for the random files. For the
large files containing over 400,000 triangles, the active portion of
the LEDS no longer fits in memory simultaneously with the hash ta-
bles even for the coherent files, and the resulting memory thrashing
is reflected in the run times. The million triangle coherent test part
took almost seven hours to process, compared to only seven sec-
onds for the 100,000 triangle coherent test part. Thrashing is even
worse for the large randomized test files than for the large coherent
test files: for 600,000 triangles, it took seventeen times longer to
process the random file compared to the coherent file, with a total
processing time of over 24 hours. (We didn’t have the patience or
spare cycles to run the algorithm on still larger randomized files.)
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Figure 4: Running times under Linux with 32 MB RAM for the
in-memory algorithm on STL files of the knot sculpture test part,
tessellated to contain from 50,000 to 1,000,000 triangles. The
solid data series is for spatially coherent STL input, while the
dotted data series is for STL input describing identical geometry
but with the order of the triangles randomized.

Running times of hours or days are clearly unacceptable. While
high-end desktop machines today commonly have an order of mag-
nitude more than 32MB of RAM, the largest triangulated data sets
have two or three orders of magnitude more triangles [15]. Buying
more memory will not be a viable solution for the largest files. In
the next section, we present our algorithm for avoiding thrashing
and the resulting exponential growth in build time when the data
(and hash tables) are too big for memory.

7 Out-of-Core Algorithm
One source of thrashing in the in-memory algorithm is that each
new face, vertex, or edge-use that we read in could be connected
to elements that have already been written out to disk, and those
elements will now need to be paged back in to be updated. With
multiple updates to the same element separated in time, each of
these updates can cause a page fault. Even if the input is extremely
coherent, so that updates to the same element are closely spaced
in time, we still see thrashing when the vertex and edge hash tables
become too large to co-exist in memory. Hash tables by their nature
are accessed randomly, with no guarantee that the portion of the
hash table we access on each look-up will still be in memory.

Our out-of-core algorithm avoids these problems in two ways:
by reordering and grouping random hash table accesses, so that we
need to build and access only one memory-sized partition of a sin-
gle larger hash table at a time, and by using external merge-sorts
to reorder all other operations to make them sequential reads and
writes. Our only out-of-order accesses are within the hash table
partitions and during the sorting stage.

Our out-of-core algorithm has four stages, described in detail in
the sub-sections below. In summary:

We make the only pass through the original input file during
stage one. During this stage, we assign sequential edge-use and
face IDs (recall that a LEDS face is really an oriented face-use)
to each edge use and triangle in the input. We record the topo-
logical relationships immediately available from the input, using a
separate array for each type of relationship. These relationships are
recorded using the IDs just assigned. We also record the vertex-use
coordinates and other information we need to derive the remain-
ing topological relationships. In stage two, we build a partitioned
vertex hash table and use it to translate vertex-use coordinates to
vertex IDs, and to derive the vertex topological relationships, creat-
ing new arrays to hold them. In stage three, we build a partitioned
edge hash table to match edge-uses with their siblings and record
these relationships in additional arrays. In stage four, we fill in the
actual LEDS elements. First we sort each array so that the entries
appear in the same order as they will be recorded in the final LEDS.
Then we read, in parallel, from the front of all the arrays containing
vertex information to create the vertices. Next, the edge-uses and
then faces are constructed by reading in parallel from their corre-
sponding arrays. This allows us to write all of the information we
need to record in each LEDS element at creation time, so that we
do not need to go back and modify elements that have already been
written out to disk.

Below, we describe these four stages in detail. Figure 5 shows a
condensed summary of the four stages.

 STL file 

Assign IDs
Record topological relationshipsStage 1

Stage 2
Build vertex hash partitions
Translate vertices

 untranslated edge−use dynamic array partitions 

Stage 3

Stage 4

Build edge hash partitions
Match edge−uses

Sort arrays
Build LEDS

 LEDS 

 vertex coordinate dynamic array 
 edge−use’s root vertex array partition s 
 translated edge−use dynamic array partitions 

 edge−use’s sibling dynamic array parti tions 
 distinct edges dynamic array 

Figure 5: The four main stages of the out-of-core algorithm. The
arrays of intermediate data created at each stage are shown in
boxes.

7.1 Stage One
Recall that the two tasks in stage one are to assign IDs and record
topological relationships in arrays. We use a separate counter for
assigning sequential IDs to each type of LEDS element (vertex,
edge-use, and face) so that we can also use the ID as an array in-
dex for that element’s array. (Later, once we know the address for
the start of each array, this allows us to translate IDs to pointers
without any lookups using simple arithmetic.) For each triangle in
the input, we can immediately assign new IDs for a face and its
three edge-uses, since each is a unique use. We cannot immediately
assign new vertex IDs, however. We do not know if each vertex
is being encountered for the first time, in which case we need to
assign it a new ID, or if it is a vertex that was already used in a tri-
angle appearing earlier in the file, in which case we should use the
ID already assigned to it. Therefore, in stage one, while we record
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IDs for faces and edge-uses, we record the coordinate triples for the
vertex-uses, waiting until we have built a vertex hash table in stage
two to assign vertex IDs.

In the general case, we record data in five different dynamic ar-
rays during stage one. Four of them record ID pairs, where the
first ID is that of a LEDS element that will contain a pointer to a
LEDS element with the second ID. These are the “edge-use’s face,”
the “edge-use’s next-in-loop edge-use,” the “face’s outer loop edge-
use,” and the “face’s inner loop edge-use” arrays. For triangulated
input, none of the faces have inner loops; therefore, we clearly do
not need this last array for STL. But for triangulated input we do not
need to record these other three arrays either. The information they
would contain can be derived later when we need it (as detailed in
the description of stage four below) merely from knowing the total
number of triangles and that the face and edge-use IDs are assigned
as sequential integers.

The final array that we always create and fill during stage one
will be used for deriving all of the remaining topological rela-
tionships. It contains one entry per edge-use, but unlike in the
four arrays described above, each entry is not a pair of IDs that
translate directly to a pointer in the final LEDS. Instead an en-
try contains three pieces of information: the ID of the edge-use,
and the coordinates of the edge-use’s two endpoints’ vertex-uses.
We call this the “untranslated edge-use” array because the vertex-
use coordinates need to be translated to vertex IDs before we can
interpret them as pointers. To prepare for the vertex translation
in stage two, we output the untranslated edge-use array in parti-
tions, appending each entry to the end of the appropriate partition:

ledsEdgeUseID = 1;
foreach triangle T in input {

v1Partition = GetPartition(T.v1Coords);
UntranslatedEdgeUses[v1Partition].AppendTriple
(ledsEdgeUseID++,T.v1Coords,T.v2Coords);

v2Partition = GetPartition(T.v2Coords);
UntranslatedEdgeUses[v2Partition].AppendTriple
(ledsEdgeUseID++,T.v2Coords,T.v3Coords);

v3Partition = GetPartition(T.v3Coords);
UntranslatedEdgeUses[v3Partition].AppendTriple
(ledsEdgeUseID++,T.v3Coords,T.v1Coords);

}

7.2 Stage Two

Stage two is the vertex hash table building and translation stage. If
the input file is large, this hash table will not fit in memory; there-
fore, we use a partitioned hash table. With partitioned hash tables,
we only build one memory-sized piece (a “partition”) of a larger
hash table at a time. Most Unix implementations now support the
mlock() function, which we use to lock the partitions in memory
while we are accessing them.

Using partitioned hash tables requires estimating how many hash
table partitions we will need and dividing the input into that many
data partitions before we process it. We take the hash value of the
vertex, modulo the number of partitions, as the index of the data
partition in which to store the input. This assures that all of the
input corresponding to the same entry in the hash table will be in
the same input data partition. Once the data is partitioned, we read
one data partition at a time and build its corresponding hash table
partition.

We translate the two endpoint vertices in the input in separate
steps. For the first translation step, we partition the “untranslated
edge-use” array based on the hash value of the edge-use’s first end-
point’s coordinates. We try to predict the number of partitions that
we will need from the size of the input file so that we can par-
tition the “untranslated edge-use” array appropriately at creation
time in stage one; the random hashing should make the partitions

of roughly equal size, so that the hash table for each will fit in mem-
ory. If necessary we can re-partition the array when we build the
hash tables.

The input to stage two consists of the “untranslated edge-use”
dynamic array partitions; the output consists of three new arrays:
the “vertex coordinate” dynamic array, containing the vertex coor-
dinates corresponding to each unique vertex ID, an “edge-use’s root
vertex” array, containing each edge-use ID with the vertex ID for
its corresponding root vertex, and a “translated edge-use” dynamic
array with the same entries as the input untranslated edge-uses but
with the vertex-use coordinates replaced by vertex IDs. Figure 6
shows the data flow between these arrays and the hash table parti-
tions during both translation steps of stage two.

 Untranslated
 Edge−Use
 partition 1

 Untranslated
 Edge−Use
 partition 2

 Vertex Hash Table
 partition 1

 Vertex Hash Table
 partition 2

Step 1 Step 2

 Semi−translated
 Edge−Use
 partition 2

 Semi−translated
 Edge−Use
 partition 1

Stage Two

 Vertex 
 Coordinates

 Translated
 Edge−Use
 partition 1

 Translated
 Edge−Use
 partition 2

 Translated
 Edge−Use
 partition 4

 Translated
 Edge−Use
 partition 3

 Edge−Use’s
 Root Vertex
 partition 1

 Edge−Use’s
 Root Vertex
 partition 2

Figure 6: Data flow for the two vertex translation steps of stage
two. The output is indicated by bold boxes. We use the same hash
table partitions for both steps but repartition and visit the hash
table partitions in reverse order in step two. Note that there are
more partitions at the end for the edge hash table we will build in
stage three, since there are more edges than vertices.

Some of these arrays are static and some are dynamic. We out-
put the “edge-use’s root vertex” information in one array per in-
put partition, thus ensuring that each resulting array will also fit in
memory (for later sorting). These arrays will have the same num-
ber of entries as the input partitions; therefore, we can allocate them
statically. On the other hand, the “translated edge-use” information
needs to be partitioned differently than the input; therefore, we do
not know its partition sizes and thus cannot allocate static arrays
for them. We also do not know how many distinct vertices we will
have; therefore, we must use a dynamic array to hold the vertex
coordinates as well.

Before processing each “untranslated edge-use” partition, we al-
locate its vertex hash table partition and lock it in memory. The
input key to the vertex hash table is a coordinate triple, and the data
stored in the hash table along with the key is the corresponding ver-
tex ID.

After we have allocated the vertex hash table partition for the
“untranslated edge-use” array partition, we perform the first ver-
tex translation step (see Figure 7 for pseudo-code). We read each
untranslated entry < Edge-Use ID, Endpoint 1 Coordinates, End-
point 2 Coordinates > from the input partition in turn, and look
up the coordinates of the middle field of the entry, Endpoint 1, in
the vertex hash table partition. If the coordinates are not found in
the hash table, we assign the next sequential vertex ID to these co-
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ledsVertexID = 1;
foreach vertex-partition vP {

allocate VtxHashTables[vP];
lock VtxHashTables[vP];
foreach triple <EdgeUseID,Vtx1Coords,Vtx2Coords>

in UntranslatedEdgeUses[vP] {
VtxID = VtxHashTables[vP].LookUp(Vtx1Coords);
if !(VtxID) { //it’s a new vertex

VtxID = ledsVertexID++;
VtxHashTables[vP].Insert(Vtx1Coords,VtxID);
VtxCoordinates.Append(Vtx1Coords);

}
//output edge-use’s root vtx

EdgeUseRootVertex[vP].AppendPair
(EdgeUseID,VtxID);

//repartition based on vtx2 hash value
newP = GetPartition(Vtx2Coords);
SemiTranslatedEdgeUses[newP].AppendTriple

(EdgeUseID,VtxID,Vtx2Coords);
}
free UntranslatedEdgeUses[vP];
unlock VtxHashTables[vP];

}

Figure 7: Pseudo-code for stage two, vertex translation step one.

ordinates, record this vertex ID in the previously empty hash table
entry, along with the coordinates, and append the coordinate triple
as the ID-th entry in the “vertex coordinate” array. (When we pro-
cess subsequent partitions, we use the same counter for assigning
vertex IDs and output them to the same, unpartitioned, “vertex co-
ordinate” array.) Otherwise, we read the previously assigned vertex
ID from the hash table. This endpoint is the root vertex for the
directed edge-use; we take its vertex ID along with the edge-use
ID from the original entry and append the pair < Edge-Use ID,
Vertex ID > to the current “edge-use’s root vertex” array partition.
Finally, we replace the middle field of the original entry with the
vertex ID and append the semi-translated triple, < Edge-Use ID,
Vertex ID, Endpoint 2 Coordinates >, to the appropriate intermedi-
ate “semi-translated edge-use” array partition. This time we choose
the partition based on the hash value of the final field in the entry,
the coordinates of Endpoint 2, since that is the next field we will
be hashing. (The input was partitioned based on the hash value of
the coordinates of Endpoint 1, which in general will be found in
a different hash table partition than Endpoint 2; hence the need to
re-partition.) Even though we are re-partitioning, however, we can
still use static arrays, because each vertex appears the same number
of times in both endpoint positions; therefore, the partitions will
be the same size as last time. After processing each “untranslated
edge-use” array partition, we free its memory. We unlock the cor-
responding vertex hash table partition, allowing it to be paged out
of memory, but do not free it yet.

In the second vertex translation step, we translate the second
endpoint coordinate in each “semi-translated edge-use” to a ver-
tex ID using the same hash table partitions we built in translation
step number one (see pseudo-code in Figure 8). We process the
partitions in the opposite order this time, starting with the “semi-
translated edge-use” partition corresponding to the last vertex hash
table partition that we built, since this hash table partition will still
be in memory. Again, we lock each hash table partition in mem-
ory while it is in use. We append the resulting translated triple,
< Edge-Use ID, Vertex ID, Vertex ID >, to the appropriate “trans-
lated edge-use” array partition (this time basing the partition choice
on the hash value of the edge, using the lexicographically ordered
pair of vertex IDs as the hash key). We can free each vertex hash ta-
ble partition and its corresponding “semi-translated edge-use” array
partition after we finish processing it.

foreach vertex-partition vP {
lock VtxHashTables[vP];
foreach triple <EdgeUseID,VtxID1,Vtx2Coords>

in vSemiTranslatedEdgeUses[vP] {
VtxID2 = VtxHashTables[vP].LookUp(Vtx2Coords);

// order endpoints lexicographically
if (VtxID1 < VtxID2)

Key = (VtxID1,VtxID2);
else

Key = (VtxID2,VtxID1);
// Find edge-use partition

euP = GetPartition(Key);
TranslatedEdgeUses[euP].AppendTriple

(EdgeUseID,VtxID1,VtxID2);
}
free VtxHashTables[vP];
free SemiTranslatedEdgeUses[vP];

}

Figure 8: Pseudo-code for stage two, vertex translation step two.

If the entire vertex hash table fits in memory and we are not par-
titioning, then we can perform translation step two at the same time
as step one, since we’ll always be looking at the same, lone hash
table partition to find both vertex-use IDs for the triple. In fact, if
we have not partitioned, then we could further optimize by look-
ing up only one time each the three distinct vertex coordinates that
appear as opposite endpoints of the three consecutive untranslated
edge-use entries for a single triangle. This will halve the number
of vertex-use lookups compared to the partitioned case. Further-
more, the “edge-use’s root vertex” array for the unpartitioned case
would not need to record the edge-use ID explicitly since they will
be generated sequentially. Even if we have multiple partitions,
some edges will still have both endpoints in the same partition. If
we find upon hashing the second endpoint at the end of translation
step one that it belongs in the same partition, we translate it im-
mediately and output the fully translated triple directly instead of
going through the semi-translated tables.

7.3 Stage Three
In stage three, we build a partitioned edge hash table in order to
match up edge-uses that are on the same edge. We output an “edge-
use’s sibling” dynamic array that records sibling pointer informa-
tion, and also record the ID of one edge-use per edge in a “distinct
edges” dynamic array (in stage four we will build the global linked
list of edges for the LEDS from this array). Our input is the par-
titioned “translated edge-use” array output in stage two, step two.
Figure 9 shows the data flow during stage three.

Before processing each “translated edge-use” partition of
< Edge-Use ID, Vertex ID, Vertex ID > entries, we in turn allo-
cate an edge hash table partition for it. Again, since we will be
accessing the hash partition randomly, we lock it in memory. The
input key to this hash table is the lexicographically ordered pair of
vertex IDs of the endpoints of the edge-use (again, we use the lexi-
cographic ordering to hide the direction of the original edge-use so
that we can match it with the unoriented edge). When we output the
partitioned “translated edge-use” array at the end of stage two, we
based the partition choice on the hash value of this input key. In ad-
dition to storing the input key, the edge hash table’s data field entry
will store up to two edge-use IDs for the edge, in the “first edge-
use” field and the “most recent edge-use” field (shown in Table 4),
as detailed below and in pseudo-code in Figure 11.

Key Lesser Vertex ID Greater Vertex ID
Data First Edge-Use ID Most Recent Edge-Use ID

Table 4: An edge hash table key-data pair.
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 Translated 
 Edge−Use
 partition 1

 Edge Hash Table
 partition 1

 Translated
 Edge−Use
 partition 2

 Edge Hash Table
 partition 2

 Edge Hash Table
 partition 3

 Edge Hash Table
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 Edge−Use’s Sibling
 partition 1

 Edge−Use’s Sibling
 partition 2

 Edge−Use’s Sibling
 partition 3

 Edge−Use’s Sibling
 partition 4

 
 Distinct 
 Edges Array 

Stage Three

 Translated
 Edge−Use
 partition 3

 Translated
 Edge−Use
 partition 4

Figure 9: Data flow for stage three. The output is indicated by
bold boxes.

One partition of the “translated edge-use” array at a time, we
look up each entry’s lexicographically ordered vertex IDs in the
edge hash table partition we have allocated for it. If the edge is
not found, we make a new entry for it in the hash table partition,
recording the edge-use ID (the first field of the “translated edge-
use” input triple) in the “first edge-use” field. We also append this
edge-use ID to the “distinct edges” array.

If there is already an entry for the edge in the hash table partition,
and it has the “first edge-use” data field filled but not the “most
recent edge-use” field, this is the second edge-use for the edge. We
read the data from the “first edge-use” field in order to append two
new entries to the “edge-use’s sibling” array: one pair of edge-use
IDs representing the pointer from the current to the first edge-use,
and one pair of edge-use IDs representing the pointer from the first
to the current edge-use. Then we record the current triple’s edge-
use ID in the “most recent edge-use” field.

For input that was guaranteed to be 2-manifold, these first two
edge-uses would be all the siblings for the edge; each edge-use of
the pair would point to the other, its sole sibling. If this was the case
for all edges, we would not need to record the most recent edge-use
in the hash table. In fact, we could delete the edge’s whole entry
after processing the second edge-use in order to free up more space
in the hash table. But for non-manifold parts, we can have more
than two edge-uses per edge.

When a non-manifold edge-use hashes to an edge entry that al-
ready has both of its data fields filled by two other edge-uses for the
edge, we also append two new entries to the “edge-use’s sibling”
array (refer to Figure 10): one pair of edge-use IDs representing
the pointer from the current triple’s edge-use to the “first edge-use”
recorded in the hash table (as before), and one pair of edge-use IDs
representing the pointer from the “most recent edge-use” recorded
in the hash table to the current triple’s edge-use. This latter sib-
ling pointer information will, when the actual LEDS edge-use is
filled in, override the “edge-use’s sibling” pair we recorded when
we processed the “most recent edge-use,” back when we recorded
that its sibling was the first edge-use. In the LEDS, the sibling
pointers of the edge-uses at each edge will thus form one circular
list, though the order of the list will depend on the input file and will
not necessarily be radially sorted. (We do radial sorting later and/or
divide up the coincident edge-uses into pairs to make a pseudo-2-
manifold representation if a particular application requires it.) Then
we overwrite the “most recent edge-use” field in the hash table en-
try with the current input entry’s edge-use ID, so that we can add
additional siblings to the final circular list. Later, when we pro-

cess the “edge-use’s sibling” array, we will have two entries telling
us what should be recorded in the sibling pointer field for some of
these non-manifold edge-uses. We must be sure to take the latter
one.

edge−use’s sibling
array additional 
entries:

EU1EU2
EU2EU1

EU1EU3
EU3EU2

EU1EU4
EU4EU3

EU1 EU4

EU3EU2

EU1 EU2

EU1 EU3

EU2

circular list 
thus far:

hash table entry
(most recent EU 
overwritten):

V1,V2 EU1        

V1,V2 EU1EU2

V1,V2 EU1EU3

V1,V2 EU1EU4

V1

V2

key first
EU

most recent
EU

non−manifold part non−manifold edge

EU4

EU3

EU2

EU1

V2

V1

Figure 10: We record each edge-use that hashes to an edge in one
of the data fields in the hash entry. If the “first edge-use” data
field is full, we record it in the “most recent edge-use” data field
and append two new entries to the “edge-use’s sibling” array, as
illustrated. Interpreting each new sibling array entry to over-ride
any previous entries for the same edge-use, we get the circular list
shown on the right after each additional edge-use is added.

We repeat this process for each of the input partitions. We can
free the memory for each “translated edge-use” array partition and
its corresponding edge hash table partition after each has been pro-
cessed, since they are not reused.

7.4 Stage Four

We wait until this final stage to actually allocate the LEDS vertices,
edge-uses and faces. We fill in an array of one type of LEDS ele-
ment at a time using the information in the intermediate arrays we
have built, sorting them first (if not already sorted) by the ID of the
LEDS element with which the relationship each entry describes will
be stored. The larger input arrays will be stored in multiple parti-
tions which individually fit in memory. We sort these partitions
separately and then perform the final “merge” stage of a merge-sort
implicitly: we keep a pointer to the next unprocessed entry in each
partition of a partitioned array, and read from the partition we deter-
mine contains the data for the next sequential ID being processed.
We will only be making one sequential pass through each sorted
partition during the merge; therefore, we will only need one block
of each sorted partition in memory at a time.
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foreach edge-use-partition euP {
allocate EdgeHashTable[euP];
lock EdgeHashTable[euP];
foreach triple <EdgeUseID,VtxID1,VtxID2>

in TranslatedEdgeUses[euP] {
if (VtxID1 < VtxID2)

Key = (VtxID1,VtxID2);
else

Key = (VtxID2,VtxID1);
Data = EdgeHashTable[euP].LookUp(Key);

//first edge-use for edge
if (!Data) {

EdgeHashTable[euP].SetFirstEdgeUse
(Key,EdgeUseID);

DistinctEdges.Append(EdgeUseID);
}

//second edge-use for edge
elseif (Data.FirstEdgeUse and

!Data.MostRecentEdgeUse) {
EdgeUsesSibling[euP].AppendPair

(EdgeUseID,Data.FirstEdgeUse);
EdgeUsesSibling[euP].AppendPair

(Data.FirstEdgeUse,EdgeUseID);
EdgeHashTable[euP].SetMostRecentEdgeUse

(Key,EdgeUseID);
}

//subsequent edge-use for non-manifold edge
elseif (Data.FirstEdgeUse and

Data.MostRecentEdgeUse) {
EdgeUsesSibling[euP].AppendPair

(EdgeUseID,Data.FirstEdgeUse);
EdgeUsesSibling[euP].AppendPair

(Data.MostRecentEdgeUse,EdgeUseID);
EdgeHashTable[euP].SetMostRecentEdgeUse

(Key,EdgeUseID);
}

}
free EdgeHashTable[euP];
free TranslatedEdgeUses[euP];

}

Figure 11: Pseudo-code for stage three.

We cannot fill in the edge-uses first because we will not have
the information needed to fill in all of their fields until after we
have processed the vertices. We do not fill in the faces first be-
cause for triangulated input there is no intermediate face data that
we can free after filling them in; therefore, we want to delay allo-
cating the faces as long as possible to minimize the total memory
requirements. Thus, we fill in the vertices first. Vertices point to
edge-uses, and in order to derive these pointer values, we need to
know the location of the final LEDS edge-use array; therefore, we
must allocate it before filling in the vertices.

Now we allocate and prepare to fill in the data in the LEDS ver-
tex array. We can fill in each LEDS vertex’s coordinates field di-
rectly while reading sequentially from the “vertex coordinate” ar-
ray, which is indexed by vertex ID; therefore, we do not need to
do any additional preparation for that field. The information we
need in order to fill in each vertex’s other field, the “first edge-use”
field, is stored in the “edge-use’s root vertex” array partitions. Each
of these partitions was created with the edge-use IDs in increasing
(though not consecutive) order. Although we will need the infor-
mation in that order later for the edge-uses, for the vertices we sort
each of these partitions by vertex ID to put them in the order in
which we will create the vertices and to bring all of the edge-uses
for a single vertex together. (We could make a separate copy to
sort in vertex ID order, but it is actually more efficient to sort and

f(n)=3n

f(n)= (n)mod3
n+1{

f(n)= n/3

 Edge−Use’s Sibling
 partition 1

 Edge−Use’s Sibling
 partition 2

 Edge−Use’s Sibling
 partition 3

 Edge−Use’s Sibling
 partition 4

 Vertex 
 Coordinates

 Edge−Use’s
 Root Vertex
 partition 2

 Vertex’s
 Edge−Uses
 partition 2

 Edge−Use’s Next
 Vertex Edge−Use
 partition 2

 LEDS 
 Edge−Uses 

 LEDS 
 Vertices
 

 LEDS 
 Faces
 

 
 Distinct
 Edges Array 

 
 Edge List 

 Edge−Use’s
 Root Vertex
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 Vertex’s
 Edge−Uses
 partition 1

 Edge−Use’s Next
 Vertex Edge−Use
 partition 1

Figure 12: Data flow for stage four. The output is indicated by
bold boxes. The input consists of the “edge-use’s sibling” parti-
tions output in stage three, as well as the vertex coordinates and
“edge-use’s root vertex” partitions output in stage two, step one.

then re-sort back to the original order.) Since the “edge-use’s root
vertex” array partition was built from a single hash partition, parti-
tioned based on vertex coordinates, all of the edge-uses for a single
vertex will appear in the same partition. Thus we can maintain the
same partitions (which will again fit in memory) and sort within
each to get a “vertex’s edge-uses” ordered array.

7.4.1 LEDS Vertices

Now we have all the data ready in the correct order to fill in the
vertices sequentially. (Pseudo-code for these operations is given in
Figure 13.) We find the coordinates of the current vertex immedi-
ately from the next entry in the “vertex coordinate” array. For the
vertex’s first edge-use, we find the “vertex’s edge-uses” partition
whose next entry contains the current vertex’s ID. There will be
several entries for this vertex, corresponding to all of its edge-uses.
We record its first edge-use entry in the LEDS vertex, translating the
edge-use to a pointer based on its ID and the address of the LEDS
edge-use array. The vertex’s remaining edge-uses will be stored in
the edge-uses themselves.

Now that we have grouped the edge-uses together by root ver-
tex, we can output entries for the “edge-use’s next vertex edge-use”
array (refer to Figure 14). We read each additional sequential entry
for the current vertex from its “vertex’s edge-uses” input partition
and append a pair of edge-use IDs to the corresponding partition
of the “edge-use’s next vertex edge-use” array: the ID of the prior
edge-use for the current vertex just read from the input, and the ID
of the edge-use in the current entry. After processing the last en-
try for the current vertex, we also output a pair of IDs to link its
edge-use back to the first edge-use for the vertex. These pairs will
be translated to the pointers in the LEDS edge-uses that will form a
circularly linked list of all the edge-uses rooted at the vertex.

After we have filled in all of the LEDS vertices, we can free the
vertex coordinate array. We do not free the “vertex’s edge-uses”
partitions, but instead re-sort each by edge-use ID (back to its orig-
inal “edge-use’s root vertex” order).

7.4.2 LEDS Edge-Uses

Along with the LEDS edge-uses, we build the global linked list of
pointers to one edge-use per edge from the “distinct edges” array
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//sort edge-uses by root vertex
foreach vertex-partition vP

VtxEdgeUses[vP] =
EdgeUseRootVertices[vP].SortOnSecond();

foreach vertex-ID vID {
//find partition with edge-uses for the vtx

foreach vertex-partition vP {
VtxEdgeUse = VtxEdgeUses[vP].GetNext();
if (VtxEdgeUse.Second == vID) {

VtxEdgeUses[vP].Increment();
break;//(out of inner foreach)

}
}

//initialize the vIDth LEDS vertex
VtxFirstEdgeUseID = VtxEdgeUse.First;
Vertices[vID].Init(VtxCoordinates[vID],

&EdgeUses[VtxFirstEdgeUseID]);
//translate remaining edge-uses for the vtx
//into edge-use’s next vtx edge-use entries

VtxPrevEdgeUseID = VtxFirstEdgeUseID;
while (VtxEdgeUses[vP].Valid()) {

VtxEdgeUse = VtxEdgeUses[vP].GetNext();
if (VtxEdgeUse.First == vID) {

VtxCurEdgeUseID = VtxEdgeUse.Second;
EdgeUsesNextVtxEdgeUse[vP].AppendPair

(VtxPrevEdgeUseID,VtxCurEdgeUseID);
VtxEdgeUses[vP].Increment();
VtxPrevEdgeUseID = VtxCurEdgeUseID;

} else { //complete circular list
EdgeUsesNextVtxEdgeUse[vP].AppendPair

(VtxPrevEdgeUseID,VtxFirstEdgeUseID);
break; //(out of while)

}
}

}
free VtxCoordinates;
foreach vertex-partition vP

VtxEdgeUses[vP] =
EdgeUseRootVertices[vP].SortOnFirst();

Figure 13: Pseudo-code for filling in LEDS vertices in stage four.

constructed in stage three. We would like this list in the same order
that these edge-uses will be stored, in order that later we can effi-
ciently look up each edge-use in the list in sequence. Therefore we
sort the array by ID (in place, if it fits in memory, otherwise with
an external merge sort). Then we read through the sorted array, ap-
pending an entry containing a pointer to each edge-use to the global
edge list (deriving the pointer address from the address of the start
of the LEDS edge-use array and the edge-use ID). At the end, we
free the input “distinct edges” array.

Next, we fill in the edge-uses. This requires some additional
sorting before we begin. We must sort the new “edge-use’s sibling”
array partitions. The edge-use’s siblings will be partitioned based
on edges; therefore, all of the information for a single edge-use
will be in the same partition, and we can maintain the partitions
for sorting. Recall that if the input was non-manifold, we need to
maintain the order of multiple siblings listed for the same edge-
use and only record the last one listed. We also need to sort the
partitions of the “edge-use’s next vertex edge-use” array that we
just created while filling in the LEDS vertex array, sorting them by
the ID of the first field in each edge-use pair.

The IDs for the other two LEDS edge-uses’ fields we need to fill,
the “edge-use’s face” and the “edge-use’s next-in-loop edge-use,”
are derived from the ID of the edge-use we will store them in. The
edge-use with ID n will point to a face with ID bn/3c and it will
point to a next-in-loop edge-use with ID n − 2 if (n)mod 3 = 0,

" vertex
edge−use"
entries:

V1EU13
V1EU19
V1EU73
V1EU91

EU13EU19
EU19EU73
EU73EU91
EU91EU13

" edge−use next
vertex edge−use"
entries:

V1

EU91

EU13 EU73

EU19

circular list:

EU13 EU19

EU73EU91

vertex neighborhood

Figure 14: The “vertex edge-use” array entries for each vertex
are used to fill in the “edge-use next vertex edge-use” array en-
tries for all of the edge-uses rooted at that vertex.

and ID n + 1 otherwise. The only other information we need to
translate the IDs to pointers is the address of the LEDS face array;
therefore, we allocate it now.

Then we go ahead and fill in the LEDS edge-uses sequentially,
finding the appropriate partition whose next entry contains the cur-
rent edge-use’s ID for each of the three partitioned arrays. We can
actually avoid having to look at multiple “edge-use’s next vertex
edge-use” partitions to find the one containing the current edge-use
ID, because we created these partitions from the “edge-use’s root
vertex” array partitions without re-partitioning. Therefore, once we
have found the partition index of the “edge-use’s root vertex” parti-
tion containing the current edge-use ID, we know that we will find
the identical edge-use ID as the next item in the “edge-use’s next
vertex edge-use” partition with the same index:

foreach edge-use-ID euID {
foreach vertex-partition vP {

EdgeUseVtx =
EdgeUseRootVertices[vP].GetNext();

if (euID == EdgeUseVtx.First) {
EdgeUseEdgeUse =

EdgeUseNextVtxEdgeUses[vP].GetNext();
assert(euID == EdgeUseEdgeUse.First);
EdgeUseRootVertices[vP].Increment();
EdgeUseNextVtxEdgeUses[vP].Increment();
break; //(out of inner foreach)

}
}
NextVtxEdgeUseID = EdgeUseEdgeUse.Second;
RootVtxID = EdgeUseVtx.Second;
//(initialize euIDth LEDS edge-use’s
// RootVtx & NextVtxEdgeUse here)

}
We translate the edge-use, face, and vertex IDs to pointers based

on their ID value and the address of the start of the respective LEDS
array. After all the edge-uses are filled in, we free the partitions for
these three remaining partitioned arrays of intermediate data.

7.4.3 LEDS Faces

Finally, we fill in the LEDS face array. Each face’s outer loop edge-
use is derived from the face ID: the outer loop edge-use for face
with ID n will have ID 3∗n. The pointer address is computed from
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the address of the edge-use array and the edge-use ID. The inner
loop list pointer for each face is null for triangulated input.

8 Results
For comparison with the naive in-memory algorithm, we ran the
out-of-core algorithm on the same knot sculpture files, again under
Linux with 32 MB of RAM. For smaller files, where all or most
all data fits in memory, the out-of-core algorithm can take up to
three times longer to build the LEDS than the naive algorithm, due
to the time required to write the intermediate data. For our coher-
ent input files, the break-even point comes after 400,000 triangles;
for random input, break-even comes after 70,000 triangles (see Fig-
ure 15). With the million triangle test part, we more than make up
for the overhead of the intermediate data with drastically reduced
thrashing. For the coherent million triangle test part, the naive algo-
rithm takes 82 times as long as the out-of-core algorithm. For the
randomized million triangle test part, the naive algorithm was so
slow that we had to terminate it after two days, but the out-of-core
algorithm performs almost identically on the coherent and on the
randomized million triangle inputs, at just under and just over five
minutes, respectively. For the largest randomized file on which we
successfully ran the naive algorithm, the 600,000 triangle test part,
the naive algorithm took over 500 times as long as the out-of-core
algorithm.
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Figure 15: Comparison of in-memory and out-of-core algorithm
LEDS build times on large knot sculpture files under Linux with
32 MB RAM. The out-of-core algorithm performs equally well on
the coherent and non-coherent input. The naive algorithm takes
82 times as long as the out-of-core algorithm on the coherent mil-
lion triangle input, and over 500 times as long on the randomized
600,000 triangle input.

Typical parts are neither quite as coherent as the original knot
sculpture test files nor as random as the randomized versions. For
other parts of a similar size, we would expect speed-ups somewhere
in between 82 and 500 times. To test this hypothesis, we ran the
naive and out-of-core algorithms on an STL file of the Stanford
dragon reconstructed from laser range finder data which contained
870,000 triangles, again using 32 MB of RAM. On average it took
9 hours and 15 minutes with the naive algorithm, but only 4 min-
utes and 11 seconds with the out-of-core algorithm, a speed-up of a
factor of 133.

9 Memory Usage
If the out-of-core algorithm is not implemented carefully, it can re-
quire far more virtual memory than the in-memory algorithm, in
order to store its intermediate data. To minimize its virtual mem-
ory requirements, we free each intermediate array and hash table
partition as soon as we have finished processing it, so that we can
re-use the memory. With this careful memory management, our
out-of-core implementation uses almost exactly the same amount
of memory as the in-memory algorithm (see Figure 16). For the in-
memory algorithm, both hash tables are built simultaneously, and
we cannot free them until the entire LEDS is built. For the out-
of-core algorithm, we build the hash table partitions sequentially,
freeing the vertex hash table before allocating the edge hash table,
and freeing them both before allocating the LEDS. We also allocate
the LEDS vertices, edge-uses, and faces in stages, allowing us to
free all of the remaining intermediate data before finally allocating
the LEDS faces. An additional advantage of the out-of-core algo-
rithm is that most of the intermediate and all of the final arrays can
be allocated in the exact size needed, so that less memory is wasted.
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Figure 16: Comparison of memory usage for the out-of-core and
in-memory algorithms on different sized knot sculpture files.

10 Spatial Partitioning
The general out-of-core algorithm described, while it builds a topo-
logical data structure very efficiently, may not be optimal when con-
sidered together with the running time of the application that uses
the LEDS. This is because it may not organize the data within the
LEDS optimally, depending on the access patterns of the particular
application that will be using the data. An application can always
re-sort the arrays of vertices, edge-uses, and faces after they have
been constructed, but if we already know what application will be
using the data structure, we might be able to build it so that its order
is better tuned to the access patterns of that application in the first
place. Often, a spatially coherent organization is desirable.

With the basic build algorithm, faces and edge-uses are stored in
the same order that they appear in the input. If there is spatial coher-
ence in the input, it will be preserved in the LEDS. For triangulated
input, we exploit the simple numeric relationships between the face
IDs and edge-use IDs to avoid having to record this information in
intermediate arrays. Thus any advantages from changing the IDs at
the start to induce a different ordering, rather than re-sorting at the
end, would be offset by the added overhead of these new interme-
diate arrays. Therefore, there would be little advantage to changing

10



6th ACM Symposium on Solid Modeling and Applications, to appear June, 2001

the order of the faces and edge-uses during the initial build, unless
the input was known to be non-coherent.

The basic build algorithm can destroy any input coherence in
the case of the vertices, however. The vertex uses are randomly
assigned to partitions during the initial read of the data; if there are
many partitions, this will effectively shuffle them when the vertex
IDs are assigned sequentially within each partition. Therefore, it
might be worthwhile to wait until after the first pass through the
data to partition for vertex hashing. This would allow us to gather
statistics on the distribution of the vertices during the initial read,
so that we could divide the vertex-uses into partitions that were
spatially coherent and still had roughly equal sizes.

When we process a file for solid freeform fabrication, we must
slice it into closely spaced parallel layers. We perform these slice
calculations using a sweep-plane slicer that looks at the vertices
in increasing z-coordinate order [17]. Therefore, we have imple-
mented a spatial partitioning scheme that divides the vertices into
partitions based on increasing z-coordinate.

We do not know the z-extents or distribution of the data before
we begin, which prevents us from knowing where to place the par-
tition boundaries for equal partition sizes a priori. During the first
pass through the triangle input data, we merely record a single dy-
namic array of the vertex coordinates of each sequential input tri-
angle, and find the minimum and maximum z value for the file.
We still do not know the distribution in z; therefore we first evenly
divide the range of input z values into small intervals, many more
than the final number of partitions we need, and later combine con-
secutive intervals into partitions of even sizes. (Our intervals are not
unlike the buckets used by Kitsuregawa et al. to tune partition sizes
during hash joins [13], but we simultaneously sort and tune with
our intervals, optimizing for processing that will occur after the ini-
tial spatial hash join as well.) We allocate a bin for each sequen-
tial interval, with the first bin corresponding to the lowest interval.
Then we read through the array of vertex coordinates, transforming
each set of three vertices defining a triangle into three “untranslated
edge-use” entries, storing each entry in the bin corresponding to the
interval containing the z-coordinate of its first endpoint. We also
update an array that records the number of entries that have been
placed in each bin.

Then we look at the bin sizes and contents to assign partition
boundaries to get partitions of roughly equal sizes. The ideal parti-
tion size is equal to the total number of entries divided by the total
number of partitions. For the first partition, we add up the number
of entries in the first i bins until the total first reaches a number
greater or equal to the ideal partition size. If the total is less than
or equal to 10% over the ideal size, bins 1 to i will be the parti-
tion. Otherwise, we subtract the number of entries in the ith bin,
and if this total is greater than or equal to 10% under the ideal size,
bins 1 to i − 1 will be the partition. In either case, the z-boundary
of the partition is calculated and recorded (the highest bin number
times the constant bin z-height for the first partition). Otherwise,
we will have to divide the ith bin between the first and second par-
titions (this will only occur if we allocated too few bins or if the
vertex data is very unevenly distributed in z). Our implementation
performs a quicksort on the whole bin and then finds the entry at
the position for an ideal partition size; we record the z coordinate
of this edge-use’s first endpoint as the z-boundary of the partition.
For better performance, we could modify the quicksort to terminate
once we had an acceptable number of entries less than the pivot
point and use the pivot point for the z-boundary. Since we rarely
need to split bins, the additional complexity of modifying quicksort
did not seem worthwhile.

We continue in this manner to find the z-boundaries of the re-
maining partitions, but rather than trying to get the size of each
individual partition within 10% of the ideal size, we aim for the
sum of the sizes of the partitions so far plus the current one to be

within 10% of the sum of the ideal sizes. This prevents errors from
building up, which could leave the final partition, consisting of all
remaining entries, constrained to be much too small or too large.
With our scheme, individual partition sizes will, in the worst case,
still be no more than 20% larger or smaller than the ideal size.

Recall that we partition vertices twice: once to translate the first
endpoint in the untranslated edge-uses, then again to translate the
second endpoint in the semi-translated edge-uses. For the first par-
titioning step, we build our hash tables and translate directly from
the bins that the z-boundary table indicates belong entirely to the
current partition (along with possibly a fraction of the end bin(s), if
they were split). When we repartition the output of this first transla-
tion step, we actually allocate partitions, using the z-boundary table
to place the output in the correct partition. The rest of the build pro-
ceeds as before.

The bins, in addition to aiding in partitioning evenly, also
roughly sort the vertices within the partitions. During the first trans-
lation step, we process the bins in order; recall that it is also in the
first translation step that we assign IDs to the vertices in the order
that we process them. Therefore, the final vertex table will be sorted
to the same granularity as the bin boundaries. More bins will result
in a finer sort.

Of course, the bin partitioning scheme takes longer than random
partitioning. In Figure 17, we compare the total times to build the
LEDS followed by slicing with the sweep plane slicer under Linux
with 32 MB RAM. Our input is the 200,000 triangle knot sculpture,
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Figure 17: Comparison of build times versus slice times for ran-
dom partitioning and z-coordinate based vertex partitioning with
different bin sizes, using the 200,000 triangle knot sculpture as
input.

we make a total of 402 slices through it, and we use 10 partitions.
Allocating 250 bins total (25 bins per partition on average), the total
build plus slice time was faster than with random partitioning, even
though the build time was longer. Using 1,000 bins (100 bins per
partition), the build time increased even more, and the savings in
analyzing and slicing no longer offset the increased build time.

11 Conclusion
We have described the design and implementation of an out-of-core
algorithm for building a topological data structure from unorga-
nized input. We have demonstrated performance improvements of
two orders of magnitude over a naive approach by using our new al-
gorithm. Unlike some algorithms that trade off space for speed, we
are able to achieve these speed-ups without increasing the virtual
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memory requirements. Our out-of-core algorithm makes building a
very large topological data structure feasible, regardless of the co-
herence of the input. As future work, we also plan to investigate
parallelizing our algorithm to run across multiple nodes in a clus-
ter, in order to benefit both from parallelism and from the aggregate
memory capacity of the cluster.

Traditionally, main memory capacity has bounded the size and
complexity of geometric models. This historic space limitation is
artificial, given the much higher storage capacities that are cheaply
available from magnetic disks. Using out-of-core techniques, we
can take advantage of disk space by modifying our algorithms to
transform random disk accesses into sequential disk accesses. We
have shown how techniques from the database literature can be suc-
cessfully applied to a geometric problem to dramatically increase
the scale that is tractable on a given machine. The application of
database techniques in this context is quite natural, and we believe
it holds promise for scalable solutions to other problems in geomet-
ric modeling.
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