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Abstract

We present a new approach for computing the voxelized Minkowski sum (excluding any enclosed voids) of two polyhedral objects
using programmable Graphics Processing Units (GPUs). We first cull out surface primitives that will not contribute to the final
boundary of the Minkowski sum, analyzing and adaptively bounding the rounding errors of the culling algorithm to solve the
floating point error problem. The remaining surface primitives are then rendered to depth textures along six orthogonal directions
to generate an initial solid voxelization of the Minkowski sum. Finally we employ fast flood fill to find all the outside voxels. We
generate both solid and surface voxelizations of Minkowski sums without enclosed voids and support high volumetric resolution
of 10243 with low video memory cost. The whole algorithm runs on the GPU and is at least one order of magnitude faster than
existing boundary representation (B-rep) based algorithms. It avoids the large number of 3D Boolean operations needed in most
existing algorithms and is easy to implement. The voxelized Minkowski sums can be used in a variety of applications including
motion planning and penetration depth computation.
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1. Introduction

The Minkowski sum of two point sets A and B in Rn is de-
fined as

A ⊕ B = {a + b | a ∈ A, b ∈ B} (1)

where a and b denote the coordinate vectors of arbitrary points
in A and B, and + denotes vector addition. If A and B represent
polygons in R2 or polyhedra in R3, A ⊕ B can be generated by
“sweeping” object A along the boundary of object B (or vice
versa). This gives another equivalent definition of Minkowski
sums, shown below, where Ba denotes the translation of object
B by the vector a.

A ⊕ B =
⋃
a∈A

Ba =
⋃
b∈B

Ab (2)

A simple 2D example is shown in Figure 1.

Figure 1: 2D Minkowski sum of a square and a triangle.

Minkowski sums are a fundamental operation for applica-
tions such as solid modeling, motion planning, collision de-
tection, penetration depth computation, and mathematical mor-
phology [1, 2, 3, 4]. Despite the simplicity of its mathematical
definition, computing the Minkowski sum of arbitrary polyhe-
dra in R3 is generally difficult because of its high combinatorial
complexity. For polyhedra A and B consisting of m and n facets

respectively, although A ⊕ B only has complexity of O(mn) if
they are convex, the complexity can be as high as O(m3n3) if
they are non-convex [5].

Minkowski sums of convex polyhedra can be computed eas-
ily and efficiently. Convex hull or Gaussian sphere approaches
are commonly used [6, 7]. However, it is much more difficult to
compute Minkowski sums of non-convex polyhedra due to the
high combinatorial complexity mentioned above. Most exist-
ing algorithms for non-convex objects fall into two main cate-
gories: convex decomposition [5, 8] or convolution [9, 10, 11].
The first approach decomposes the input non-convex polyhedra
into convex pieces, computes all the pairwise Minkowski sums
of these convex pieces, and then takes their union. However,
the number of pairwise Minkowski sums can be very large (it
has quadratic complexity), and computing or even approximat-
ing their union robustly is difficult and time-consuming. On
the other hand, the convolution-based approach starts with a
set of surface primitives that is a superset of the Minkowski
sum boundary. These surface primitives are then trimmed and
filtered to form the final boundary. The trimming and filter-
ing operations may become very complex since the number of
surface primitives also has quadratic complexity and they may
intersect each other arbitrarily in 3D space. So both the convex-
decomposition and convolution approaches involve many com-
plex 3D computations, and their performance degrades rapidly
as the polyhedra complexity increases.

In this paper we present a new approach for computing
Minkowski sums of arbitrary polyhedra that extends and im-
proves upon previous work on Minkowski sums and combines
these methods with GPU-based voxelization techniques. Un-
like most existing algorithms, which compute either an ex-
act [8, 7, 12, 11] or an approximated [10, 5] boundary repre-
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sentation, our algorithm aims to directly create both a solid and
surface voxelization of the Minkowski sum, without having to
compute a complete boundary representation. Meanwhile we
provide a boundary visualization for display. The volumetric
data is stored and computed exclusively on the Graphics Pro-
cessing Unit (GPU) to utilize its rasterization functionality and
parallel computation capacity. The benefits of our voxelization
algorithm include:

• easy implementation: Our approach avoids the complex
3D computations involved in convex-decomposition and
convolution approaches.

• high speed: Our algorithm is at least one order of magni-
tude faster than existing B-rep based algorithms.

• memory efficiency: Our voxelized Minkowski sum only
requires 128MB video memory for a resolution of 10243.

• multiresolution: Users can choose different volumetric
resolutions according to the tolerance requirements of dif-
ferent applications.

• robustness: We analyze floating point rounding errors of
the culling algorithm to ensure correct voxelization.

Compared with the boundary representation, our volumet-
ric representation of Minkowski sums is more advantageous in
various applications such as collision detection, motion plan-
ning and penetration depth computation. It provides immediate
collision feedback by simply checking if a certain voxel is set
to one or zero. Minkowski sum based motion planners often
sample the free configuration space to construct a connectivity
roadmap [3, 13]; the solid volumetric data provides such sample
points with no need of further computation. To find penetration
depth, we only need to compute the shortest distance from the
origin to all the surface voxels. We will give some application
examples of voxelized Minkowski sums in section 5.

The accuracy of our algorithm is governed by the volumet-
ric resolution. Since we support a relatively high resolution of
10243 by using volume encoding (section 4.1), we can achieve
an accuracy of 0.085% (measured by the minimum distance
from centers of boundary voxels to the actual Minkowski sum
boundary,

√
3/2/1024, or

√
3/2/N for a resolution of N3),

which is enough for most applications.
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Figure 2: The 2D Minkowski sum (on right in red) of a yellow disk and a green
belt contains an enclosed void. The yellow disk can be placed at B, but it cannot
go from A to B.

One limitation of our work is that we do not compute en-
closed voids of a Minkowski sum, i.e., we only identify its outer

boundary. Usually in motion planning, we do not need to con-
sider enclosed voids in Minkowski sums, because they repre-
sent locations where the object can be placed without collision,
but cannot be reached from the outside (Figure 2).

2. Related Work

2.1. Minkowski Sums

Ghosh presented a complete computational framework for
Minkowski sums of both convex and non-convex objects where
both input objects are represented as “slope diagrams” [6]. The
two slope diagrams are merged and their Minkowski sum is re-
covered from the merged diagram. Unfortunately, the slope di-
agram operation is complex for non-convex objects; no general
implementation of this algorithm is known. Based on a simi-
lar idea, Fogel and Halperin proposed computing Minkowski
sums of convex polyhedra using a “Cubical Gaussian Map,”
where geodesic arcs on the Gaussian sphere are projected to
the six faces of a bounding cube [7]. This work was later ex-
tended by the first author, directly computing the arrangements
of geodesic arcs embedded on the Gaussian sphere [14], but
also limited to convex objects.

Convex-decomposition based approaches can be categorized
into exact and approximate algorithms. The exact algorithms
allow robust implementation and are able to find low dimen-
sional boundaries, i.e., they are able to identify dangling faces
or lines and singular points in the Minkowski sums [15, 12, 8].
However, these algorithms are limited to relatively simple ob-
jects because of their performance. To compute the Minkowski
sum of two objects with hundreds of triangles, it usually takes
tens of minutes [15]. Varadhan and Manocha proposed another
convex-decomposition based algorithm to compute an approxi-
mated boundary of Minkowski sums [5]. Instead of computing
the exact union of pairwise Minkowski sums, they compute a
signed distance field and extract its zero iso-surface. Their algo-
rithm provides geometrical and topological guarantees by using
an adaptive subdivision algorithm. However, the performance
of their algorithm is impacted by the large number of convex
pieces after decomposition. The timing reported in their paper
shows that computing the distance fields for tens of thousands
of pairwise convex Minkowski sums usually takes quite a few
minutes.

Convolution-based approaches have also been proposed for
computing the boundary of Minkowski sums. It is well known
that for two objects the convolution of their boundaries is a su-
perset of the boundary of their Minkowski sum and also a subset
of the Minkowski sum of their boundaries [16, 10]. Guibas and
Seidel presented an output sensitive algorithm for computing
the convolution of 2D curves [17]. Kaul and Rossignac intro-
duced a set of criteria to cull out facets that are not part of the
Minkowski sum boundary [2]. These criteria are also used in
this paper for Minkowski sum rendering (section 3.1). Peter-
nell and Steiner studied how to extract the outer boundary from
the convolution of two objects with piecewise smooth bound-
aries and compute a local quadratic approximation [10]. Lien
proposed to start with a brute force convolution, and compute
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facet-facet intersections as 2D arrangements on each facet [9].
Cells from 2D arrangements are then merged and filtered using
collision detection tests. Unfortunately the 2D arrangements
and collision detection become both time and memory consum-
ing when the size and complexity of the input models increase.

To overcome the computational complexity introduced by
3D operations, some approaches seek to use other lower di-
mensional representations. Hartquist et al. suggested using
“ray representations” (ray-reps) to reduce 3D Minkowski sum
computation to 1D Boolean operations [18]. Lien proposed a
point-based approach which creates a point set covering the
Minkowski sum boundary [19]. Several filters, including the
ones introduced in [2], are used to cull out points that are not
on the Minkowski sum boundary. Lysenko et al. proposed con-
verting the Minkowski sum to a convolution and computing the
convolution using a fast Fourier transform (FFT) [20].

Some algorithms have also been introduced for handling spe-
cific types of objects. Seong et al. presented an algorithm for
computing Minkowski sums of surfaces generated by slope-
monotone closed curves [21]. Mühlthaler and Pottmann intro-
duced an explicit parameterization of the convolution of two
ruled surfaces [16]. Recently Barki et al. proposed an approach
for computing the Minkowski sum of a convex polyhedron and
a non-convex polyhedron whose boundary is completely recov-
erable from three orthogonal projections [22].

2.2. GPU-based Voxelization

Voxelization is the process of generating a volumetric rep-
resentation for geometric objects. In this section we briefly
review several GPU-based voxelization algorithms that are re-
lated to the techniques we use in this paper. Voxelization algo-
rithms can be classified into surface voxelization and solid vox-
elization, depending on whether they voxelize only the bound-
ary surface or the whole interior. Most algorithms described
below work for both surface and solid voxelizations. Another
classification is binary voxelization, where each voxel is repre-
sented by 0 or 1, and non-binary voxelization, where each voxel
is represented by a real value in the range [0, 1]. In this paper,
we only consider binary voxelizations.

Karabassi et al. presented a depth buffer based voxelization
algorithm [23]. The object is projected to the six faces of its
bounding box and depth information is then read back from the
depth buffer and used to reconstruct the object. It works only
for an object whose boundary can be completely seen from the
six orthogonal directions, similarly to [22]. In the algorithm
proposed by Fang and Chen, the object is rendered slice by
slice along the z direction, and each slice is voxelized individu-
ally [24]. However, surfaces parallel (or nearly parallel) to the
projection direction are not voxelized, and the memory cost for
a high resolution volume is high since each voxel requires one
byte of memory. To solve these problems Dong et al. proposed
projecting the model along three orthogonal directions and en-
coding multiple voxels in one texel [25].

3. Rendering Minkowski Sums

In this section we introduce a GPU-based algorithm for ren-
dering the outer boundaries of Minkowski sums, without hav-
ing to compute a correct and complete boundary representation.
The voxelization algorithm, with applications to motion plan-
ning and penetration depth computation that will be discussed
later in section 4 and 5, is built upon the rendering results. The
rendering algorithm described here can also be used as a stand-
alone visualization system for 3D Minkowski sums. It can also
be directly applied to implement polyhedron interpolation and
morphing.

We first introduce the terminology used in this section. We
assume the two input polyhedra A and B are 2-manifold trian-
gular meshes. Let FA = { fA} and FB = { fB} be the boundary
triangle sets, EA = {eA} and EB = {eB} be the edge sets, and
VA = {vA} and VB = {vB} be the vertex sets of A and B respec-
tively.

The rendering algorithm first computes a set of surface primi-
tives that is a superset of the Minkowski sum boundary. Surface
primitives that do not contribute to the boundary are culled out
in parallel on the GPU. The remaining primitives are written to
a VBO (Vertex Buffer Object), which is then rendered directly
using OpenGL.

3.1. Surface Primitive Culling

It has been shown in [2] that any facet on the boundary of
A⊕B is generated in one of the following three ways: translating
a triangle in FA by a vector in VB, translating a triangle in FB by
a vector in VA, or sweeping an edge in EA along an edge in EB.
We call the triangles formed by the first two methods triangle
primitives, and the quadrilaterals formed by the third method
quadrilateral primitives.

The counts of all the triangle and quadrilateral primitives are
|FA| × |VB| + |VA| × |FB| and |EA| × |EB| respectively. These
numbers are as high as millions for two polyhedra with thou-
sands of triangles. It will take a large amount of time and mem-
ory to render all these primitives. For example, 1 GB of video
memory will limit the size of A and B to just a few thousands
of triangles. Note, however, that a large number of surface
primitives lie entirely inside the Minkowski sum and will be
hidden during the rendering (see Figure 3 for a 2D example).
We can cull out these primitives and render only the remain-
ing ones. As to be shown in Table 1, this will greatly reduce
the number of primitives to be rendered. In addition to these
completely hidden primitives, some primitives are trimmed by
others and become partially hidden during the rendering (also
shown in Figure 3). Convolution-based algorithms for comput-
ing the Minkowski sum boundary identify and compute all such
intersections, but for the purpose of rendering, we allow them
to be handled automatically in the graphics pipeline by using
the appropriate depth test.

In the text that follows we call a surface primitive contribut-
ing if its intersection with the Minkowski sum boundary has a
non-zero area (so a partially trimmed primitive is contributing
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Figure 3: A 2D example of surface primitives in the interior of the Minkowski
sum (shown as red lines) and trimmed surface primitives (shown as dashed
lines).

since it has a partial overlap with the Minkowski sum bound-
ary); otherwise we call it noncontributing. As the name im-
plies, contributing primitives will “contribute” to the boundary
of the Minkowski sum, but noncontributing ones will not. Note
that according to our definition, a surface primitive that only
shares an edge or vertex with the Minkowski sum boundary is
noncontributing, because their intersection has an area of zero.

The rendering algorithm developed in this paper is based
on several propositions for primitive culling. The first two
propositions (Proposition 1 and 2 below) were first intro-
duced in [2]. However, no proof was provided in that paper.
These two propositions were used later, also unproved, in other
works [19, 9]. In [26] the authors proved similar propositions,
but their criterion for triangle primitive culling is weaker than
the one stated below (Proposition 1). Here we use a mathemat-
ical description and give proofs of these two propositions.
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Figure 4: Illustration of the proof of Proposition 1 (i), 2 (ii), 3 (iii), and 4 (iv).

Proposition 1. Given fA ∈ FA and vB ∈ VB, with nA the out-
ward facing normal of fA, and ei the ith incident edge pointing
away from vB. If fA ⊕ vB is a contributing triangle primitive,
then nA · ei ≤ 0, ∀ei.

Proof. (By contradiction.) Suppose ∃ek such that nA · ek > 0
(Figure 4 (i)). Since A is a 2-manifold, for any point P inside

the triangle fA, we can find a hemisphere HS(P) with a small
radius r, centered at P and entirely inside A, i.e.,

HS(P) = {Q : ‖Q − P‖ ≤ r, (Q − P) · nA ≤ 0}
HS(P) ⊆ A.

Then we consider the translated hemisphere HS(P)⊕ vB and the
prism generated by fA ⊕ ek. They locate on different sides of
the triangle fA ⊕ vB (shaded in the figure). Since P is inside fA,
we can always reduce the radius of HS(P) such that the other
half of the hemisphere HS(P) ⊕ vB is entirely inside the prism
fA⊕ek. This means that for each point inside the triangle fA⊕vB,
we can always find a small sphere around it and the sphere is a
subset of A ⊕ B (remember that HS(P) ⊕ vB ⊆ A ⊕ vB ⊆ A ⊕ B
and fA ⊕ ek ⊆ A ⊕ B). So fA ⊕ vB will not overlap with the
boundary of A⊕B. This contradicts the assumption that fA ⊕ vB

is contributing.

Proposition 2. Suppose eA ∈ EA and eB ∈ EB, f 0 and f 1 are
the two incident triangles of eA, and e0 (or e1) is one of the
two edges of f 0 (or f 1) pointing away from eA. Let f 2, f 3, e2

and e3 be defined similarly for eB. If eA ⊕ eB is a contributing
quadrilateral primitive, then either (eA × eB) · ei ≤ 0, ∀ei or
(eA × eB) · ei ≥ 0, ∀ei, i ∈ {0, 1, 2, 3}.

Proof. (By contradiction.) Suppose (eA × eB) · e0 > 0 and
(eA × eB) · e3 < 0 (the other cases can be proved similarly).
We consider the two prisms generated by f 0 ⊕ eB and f 3 ⊕ eA

(Figure 4 (ii)). They share the quadrilateral eA ⊕ eB (shaded in
the figure) and locate on different sides of it. Since both prisms
are subsets of A ⊕ B, eA ⊕ eB will not overlap with the bound-
ary of A ⊕ B. This contradicts the assumption that eA ⊕ eB is
contributing.

Propositions 1 and 2 give necessary conditions for contribut-
ing primitives by analyzing local supporting planes. If both
input polyhedra are convex, these conditions become both nec-
essary and sufficient (because local supporting planes of a con-
vex polyhedron are also global supporting planes), and thus can
be used to compute the complete Minkowski sum boundary.
In the convex case they are equivalent to the criteria used to
find boundary triangles and quadrilaterals in the slope-diagram
based approaches [6, 7, 22].

The above two propositions only check the relative positions
of incident triangles. In this paper we introduce two new propo-
sitions that check the orientation of incident triangles. These
two propositions are based on the convexity test of vertices and
edges. For a vertex, if there exists a supporting plane which
does not intersect the interior of the polyhedron in the infinitesi-
mal neighborhood of the vertex, it is a convex vertex; otherwise,
it is non-convex. For an edge, if its dihedral angle is greater than
π, it is a non-convex edge. These two new propositions cull out
primitives that are generated by at least one non-convex vertex
or edge. In [22] the authors considered the case of non-convex
edges, but they did not provide a proof.

Proposition 3. Suppose eA ∈ EA and eB ∈ EB. If either eA or
eB is a non-convex edge, then eA ⊕ eB cannot be a contributing
quadrilateral primitive.
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Proof. (By contradiction.) Suppose eA⊕eB is contributing, then
eA ⊕ eB at least partially overlaps with the boundary of A ⊕ B.
Then there must exist a point c ∈ eA ⊕ eB, such that c is on
the boundary of A ⊕ B but not on any edge or vertex of the
boundary (Figure 4 (iii)). Then c is either a local maximum or
a local minimum of A ⊕ B in the direction of eA × eB. Suppose
c = a + b, a ∈ eA and b ∈ eB, then both a and b should also
be local maximum or minimum of A and B respectively in the
direction of eA × eB. This cannot be true if either eA or eB is a
non-convex edge.

Proposition 4. Suppose fA ∈ FA and vB ∈ VB. If vB is a non-
convex vertex, then fA ⊕ vB cannot be a contributing triangle
primitive.

Proof. (By contradiction.) Suppose fA⊕vB is contributing, then
fA ⊕ vB at least partially overlaps with the boundary of A ⊕ B.
Then there must exist a point c ∈ fA ⊕ vB, such that c is on the
boundary of A⊕B but not on any edge or vertex of the boundary
(Figure 4 (iv)). Then c must be a local maximum of A⊕B in the
direction of nA. Suppose c = a + vB, a ∈ fA, then vB must also
be a local maximum of B in the direction of nA. This cannot be
true if vB is a non-convex vertex.

We use Proposition 1 and 4 to cull triangle primitives, and
Proposition 2 and 3 to cull quadrilateral primitives. Note that
not all the remaining primitives are contributing, because the
four propositions only give necessary (not sufficient) conditions
for contributing primitives. However, the number of primitives
will be reduced greatly after culling. Table 1 compares the num-
ber of primitives before and after culling for several examples
(see Figure 6 for pictures of these input models). We can see
that less than 1% of the total primitives remain after culling.
Figure 5 shows a Minkowski sum and its triangle and quadri-
lateral primitives after culling.

3.2. VBO Generation

To take advantage of back-face culling and still render the
surface primitives correctly, we also need to compute their sur-
face normals. From Proposition 1 and 2, we know that the ac-
tual normal of a triangle primitive fA⊕ vB (equivalently fB⊕ vA)
is always the same as the outward facing surface normal of fA,
and the actual normal of a quadrilateral primitive eA ⊕ eB is ei-
ther eA × eB (when (eA × eB) · ei ≤ 0, ∀ei) or −eA × eB (when
(eA × eB) · ei ≥ 0, ∀ei). For implementation, we use a flag array
to store the results of the culling test. If a surface primitive is
noncontributing and should be culled out, we set its flag to be
0; otherwise, we set it to be 1 for triangle primitives, and 1 or
-1 for quadrilateral primitives, according to whether its surface
normal is eA × eB or −eA × eB respectively.

Since the number of surface primitives has quadratic com-
plexity, the culling test will become costly in time when the
sizes of the models increase. However, it can be easily par-
allelized since each surface primitive can be treated inde-
pendently. We implemented the parallel culling test using
NVIDIA’s CUDA library on a Quadro FX 5800, which has 30
multiprocessors and a “compute capacity” of 1.3. We chose a

block size of 16 × 16 based on the consideration that the maxi-
mum number of threads per block is 512. We also tested other
block sizes (16× 32 and 16× 8) and found no performance im-
provement. Each block shares the data of 16 triangles and 16
vertices (or 16 edges from each of the two objects in the case of
quadrilateral primitives), and performs culling tests on 256 sur-
face primitives. For 0 ≤ i, j ≤ 15, thread (i, j) works on triangle
primitive fi ⊕ v j or quadrilateral primitive ei ⊕ e j.

We have also implemented two memory optimization tech-
niques: shared memory and coalesced global memory. Since
all the 256 threads in a block share the coordinates of 16 tri-
angles and 16 vertices (or 32 edges), and shared memory is
much faster than global memory, we copy these coordinates
from global memory to the shared memory of each block be-
fore we perform the culling test. To achieve coalesced global
memory access [27], instead of storing the x, y, and z coordinate
of each vertex consecutively (x1y1z1x2y2z2...xnynzn), we store
all the x coordinates first, followed by all y, and then all z co-
ordinates (x1x2...xny1y2...ynz1z2...zn). On average we achieved
a three times speedup compared to the unoptimized version by
using shared memory and coalesced global memory in our im-
plementation. Out of the 3× speedup, 2× speedup comes from
using shared memory and 1.5× speedup from using coalesced
global memory.

After all the culling tests are done, primitives with non-zero
flags and their normals are written to the VBO, which is directly
rendered using OpenGL. (A seemingly more efficient way to
generate the VBO would be simply discarding noncontributing
primitives and directly storing contributing ones to the VBO
without using any flag array. However, this is difficult to im-
plement on the GPU, because each primitive is tested indepen-
dently in parallel and thus its position in the VBO cannot be
determined at the time when it is tested.)

3.3. Rendering Results

We show some results of the above CUDA-based rendering
algorithm in Figure 6. The program runs on a Quadro FX 5800
GPU. We also implemented a sequential version of the same
algorithm on a Pentium 4 CPU at 3 GHz, and compared the
performance between the CUDA and the CPU implementation
(see Table 2). Overall the CUDA implementation has a 25 to
30 times speedup over the CPU implementation.

We also applied the rendering algorithm to solid interpola-
tion and shape morphing. The linear interpolation between two
objects A and B can be computed using Minkowski sums as
(1 − t)A ⊕ tB, t ∈ [0, 1] (see [2]). An example of shape morph-
ing is shown in Figure 7.

4. Voxelizing Minkowski Sums

In this section we introduce a new algorithm for voxelizing
Minkowski sums, which is based on the rendering algorithm
discussed in the previous section. Most existing GPU voxeliza-
tion algorithms utilize the GPU’s rasterization functionality to
voxelize boundary surfaces, and then perform a parity check
via the stencil buffer [28] or bitwise logic operations [24] to fill

5



A B #tri primitives #quad primitives #total primitives
before culling after culling % before culling after culling % %

bunny ball 43 M 114 K 0.26% 97 M 54 K 0.06% 0.12%
pig horse 114 M 694 K 0.61% 255 M 268 K 0.11% 0.26%

Scooby torus 272 M 268 K 0.10% 612 M 327 K 0.05% 0.07%
dancing kids octopus 651 M 1,770 K 0.27% 1,466 M 1,300 K 0.09% 0.15%

Table 1: Examples of surface primitive culling. From left to right, each column respectively shows models A and B, the number of triangle primitives before/after
culling, the percentage of remaining triangle primitives, the number of quadrilateral primitives before/after culling, the percentage of remaining quadrilateral
primitives, and the percentage of total remaining primitives after culling.

Figure 5: Triangle and quadrilateral primitives after culling. From left to right, each picture represents the two models (ball and dragon), triangle primitives after
culling (two different colors represent triangles from the two different models), quadrilateral primitives after culling (yellow), and finally the rendered Minkowski
sum.

(1) (2) (3)(1) (2) (3)

(4) (5) (6)

Figure 7: Shape morphing between a cone (78 triangles) and a torus knot
(8000 triangles). The animation is computed and rendered at a framerate of
18 frames/second.

the interior voxels. However, they cannot be applied to the vox-
elization of Minkowski sums rendered using the above method,
because of the existence of non-boundary surfaces in the inte-
rior. These surfaces will also be voxelized and cannot be dis-
tinguished from the actual boundary surfaces. The parity check
will fail in such a case.

To solve this problem, instead of using parity checks to vox-
elize the interior, we propose using 3D flood fill to find all the
outer voxels (defined as voxels whose centers are outside the
Minkowski sum). The idea has similarities to the front prop-
agation used for sweep volume approximation in [29]. Their
method computes a discrete distance field of low resolution
(128× 128× 128) on the GPU and then reads back the distance
values to perform front propagation on the CPU. Our flood fill
method directly uses the adjacency between neighboring vox-
els. It runs completely on the GPU and avoids the expensive
readbacks from GPU to CPU memories.
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Figure 8: Overview of the voxelization algorithm. We first voxelize all the
remaining surface primitives after culling (left), including boundary surfaces
(solid black lines) and surfaces hidden inside (red lines). The outer dashed
black lines represent the view volume. Then we perform an orthogonal fill
along the six orthogonal directions (four in 2D) to find a portion of the set of
outer voxels (in green, middle). Finally we use flood fill to find all the remaining
outer voxels (in yellow, right).

Figure 8 gives a 2D illustration of our voxelization algorithm.
It consists of three main steps: primitive voxelization, orthogo-
nal fill, and flood fill, as discussed below.

4.1. Primitive Voxelization

As the first step of the voxelization algorithm, we voxelize
all the remaining surface primitives after culling. This gives an
“incorrect” surface voxelization because, as discussed in sec-
tion 3.1, we do not cull out all the noncontributing portions of
surface primitives. There still exist primitives (or fractions of
primitives) hidden inside by the boundary surfaces (see Figure 8
left), which are also voxelized along with the actual boundary
primitives. However, this initial surface voxelization can be
used later as a barrier to stop the flood fill. We will describe
how to construct the final surface voxelization in section 4.3.

Graphics hardware is typically used for surface voxelization
using the following technique. Each surface of an input model
is projected orthogonally onto a 2D plane. The projected sur-
faces are rasterized to produce a set of fragments. These frag-
ments contain depth information as well as 2D coordinates in
the projection plane, which are used to map each fragment to
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A⊕B:

Figure 6: Four examples of CUDA-based Minkowski sum rendering. The Minkowski sum boundary is colored in green, blue, and yellow, representing triangle
primitives from the green object, triangle primitives from the blue object, and quadrilateral primitives respectively.

A B #tri of A #tri of B CUDA time (sec) CPU time (sec) Speedup
bunny ball 86,305 500 1.39 35.97 25.82×

pig horse 2,784 40,746 3.26 82.00 25.13×
Scooby torus 170,106 1,600 6.84 198.54 29.03×

dancing kids octopus 78,706 8,276 15.24 482.15 31.65×

Table 2: Timing for rendering the Minkowski sums in Figure 6 (including primitive culling and VBO generation). From left to right, each column respectively
shows models A and B, number of triangles of A and B, time of the CUDA implementation, time of the CPU implementation, and speedup of CUDA over CPU.

a corresponding voxel in the 3D volume. In the slicing-based
algorithm [24], each slice is voxelized consecutively by setting
a near and far clipping plane. To generate a 10243 volume, the
object has to be rendered 1024 times. This algorithm was im-
proved by encoding each voxel into a single bit of a texel [25].
The benefits are twofold – it reduces both the memory cost and
the number of passes needed to render the object.

We choose to use this voxelization technique for our surface
voxelization due to its efficiency. Instead of using one or mul-
tiple 2D textures as in the original algorithm [25], we simplify
the voxel access by using a single 3D texture, which has a 32 bit
RGBA format and requires only 128MB video memory for the
10243 volumetric resolution. By using Multiple Render Targets
(MRTs) we can render to 8 color buffers simultaneously. So in
total we only need to render the VBO 4 (= 1024/32/8) times in
order to voxelize all the surface primitives.

We set the view volume to be a little larger than the bounding
box of the Minkowski sum, which can be easily computed by
adding the bounding boxes (i.e., adding the corresponding min-
imum and maximum x, y, and z coordinates) of the two input
models, such that all the voxels on the view volume boundary
are outer voxels. To be more specific, we enlarge the computed
bounding box by a scale factor of 1 + 2(1 + ε)/ [n − 2(1 + ε)],
where n is the volumetric resolution and ε is an infinitesimal
number. This guarantees all the outer voxels are connected and

can be visited from each other.
We implement the volume encoding through a fragment

shader program, which computes an RGBA color for each frag-
ment according to its depth information. The depth of each
fragment is passed to the shader program as a texture coordi-
nate, similar to the technique described by Fernando and Kil-
gard for Phong shading [30].

A common problem of surface voxelization is that surfaces
perpendicular (or nearly perpendicular) to the projection plane
are not rasterized because their projections have a zero (or near
zero) area. This problem was addressed in [25] by projecting
the input model along three orthogonal directions and finally
compositing the three directional voxelizations. We use the
same approach and implement the composition using another
fragment shader program. It samples the x and y 3D textures
and writes to the z texture. The x and y textures are deleted after
composition to free the video memory they use. In our exper-
iments, the voxelization of Minkowski sum surface primitives
(unculled triangles and quadrilaterals), including three direc-
tional projections and texture composition, takes on the order
of one second (see Table 3). An example of primitive voxeliza-
tion is shown in Figure 9.

4.2. Orthogonal Fill
The goal of orthogonal fill is to find all the outer voxels that

are visible from the outside along the six orthogonal directions
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Figure 9: Primitive voxelization (10243) of the bunny ⊕ ball example in Fig-
ure 6. Each voxel is drawn as a point at its center. It is colored in red, green,
blue, or cyan if its corresponding bit in the composite 3D texture is in the R, G,
B, or A channel respectively. Note that each color band in the figure represents
eight slices of voxels.

(+x, +y, +z, −x, −y, and −z). An example of such voxels is
shown in green in Figure 8. The orthogonal fill is done by ren-
dering the VBO from section 3.2 six times, each time along
a different orthogonal direction. These outer voxels serve as
seeds for the later flood fill described in section 4.3.

The details of the orthogonal fill algorithm are as follows.
We first generate a depth texture and attach it to a framebuffer
object for offscreen rendering. Suppose we are rendering the
VBO along the axis direction (axis is one of +x, +y, +z, −x,
−y, and −z). We first need to rotate the unculled primitives (the
VBO) such that axis is aligned with the original +z direction.
Then we clear the depth buffer to the maximum depth value 1.0
and set the depth test to GL LESS. Now we render the VBO to
the depth texture. After rendering, the depth texture contains
the smallest depth along the axis direction sampled at the cen-
ter of each pixel (Figure 10). Then we identify all the voxels
with a depth (at their centers) no larger than the corresponding
stored value in the depth texture as outer voxels, and write an
appropriate RGBA color to a 3D texture for each pixel. For ex-
ample, for the pixel with a smallest depth of 2.7 in Figure 10,
the RGBA color is 11 10 00 00 in binary form. Here we use
1 for outer voxels and 0 otherwise. We only need three such
3D textures for the orthogonal fill – each pair of opposite direc-
tions share the same texture. After all six directions are com-
puted, we composite the three directional 3D textures, using the
same composition shader program that was used for primitive
voxelization (section 4.1).

4.3. Flood Fill

After primitive voxelization and orthogonal fill, we have two
3D textures, one for primitive voxels and the other for the outer
voxels found by orthogonal fill. Since these two steps only re-
quire three and six passes of rendering respectively and one pass
of composition, they run very fast, both steps taking approxi-
mately one second for a resolution of 10243 (Table 3). How-
ever, they are “incomplete” voxelizations in that the primitive
voxelization includes extra voxels hidden by the boundary sur-
faces, and the orthogonal fill voxelization contains only a por-
tion of all the outer voxels. Outer voxels that are not visible
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Figure 10: Outer voxels found by orthogonal fill along the specified axis direc-
tion. These outer voxels are colored in red, green, blue, or cyan according to
their corresponding color channels. Here the volumetric resolution is 82 and
each color channel has a bit-depth of 2. Note that the depth values, actually
from [0, 1], are scaled to [0, 8] for the sake of clarity in the figure.

from outside along any of the six orthogonal directions are not
identified by the orthogonal fill process (for example, yellow
voxels in Figure 8). To find all such outer voxels, we perform a
flood fill that builds upon these two incomplete voxelizations.

In the following, we denote the 3D texture from primitive
voxelization as Tb and the 3D texture from orthogonal fill as
To. We use T (i, j, k) to denote the bit in the 3D texture T which
represents voxel (i, j, k). We call a voxel the neighbor of another
if they share a face (according to this definition, a voxel has at
most six neighbors).

Flood fill, also called seed fill, is one of the fundamental al-
gorithms in raster graphics. Given a seed pixel inside a closed
boundary, it recursively traverses all the pixels connected with
it and assigns the desired color to them. Most flood fill algo-
rithms explicitly or implicitly make use of a queue or stack data
structure, both of which are difficult to implement efficiently on
GPUs. What is more, our flood fill is performed in 3D image
space, which increases the computational complexity. Flood
fill algorithms are often sped up by filling whole lines instead
of individual pixels [31]. However, this technique relies on be-
ing able to perform valid parity checks, which we cannot sup-
port because of interior surface primitives. In this section, we
propose a GPU-based 3D flood fill algorithm. It benefits from
the three facts below. First, we use all the outer voxels from
orthogonal fill as seeds, which usually have already covered a
large portion of outer voxels. Second, we create a “mask” from
newly found outer voxels such that we do not need to check
every voxel in the next iteration. Third, the algorithm runs in
parallel on the GPU, so in one iteration we are able to find a
batch of new outer voxels, which represents a new “front.”

Our flood fill is based on the following two observations: all
the outer voxels are connected, and any neighbor of an outer
voxel is either an outer voxel or a boundary voxel. Figure 11
shows a 2D illustration of the flood fill process. Outer vox-
els from orthogonal fill (in green) are used as “seeds” of the
flood fill. Each iteration we find new outer voxels (in yellow)
by checking the neighbors of existing outer voxels. The process
is repeated until we reach the “barrier,” the boundary voxels (in
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red), and no more new outer voxels are found.

axis

8.0 5.8 2.2 2.1 2.7 1.6 1.7 8.0

1.00 0.73 0.28 0.26 0.34 0.20 0.21 1.00

0

1

0.125

0.250

0.375

0.500

0.625

0.750

0.875

depth

depth buffer
axis

8.0 5.8 2.2 2.1 2.7 1.2 1.7 8.0

1.00 0.73 0.28 0.26 0.34 0.20 0.21 1.00

0

8

1

2

3

4

5

6

7

depth

depth buffer

A

A

B

B

G

G

R

R

1

2 3

1 1 1 1 1

2

1 1

2 2

4 3 3

Figure 11: Flood fill of outer voxels. Voxels from primitive voxelization (Tb)
are shown in red (we use solid black lines to represent the actual outer boundary
of the Minkowski sum and dashed black lines the primitives hidden inside).
Outer voxels found by orthogonal fill and not in Tb are shown in green. Yellow
denotes outer voxels found by flood fill. The number in each yellow voxel
indicates how many iterations are needed to reach that voxel.

Now we explain the implementation of flood fill in detail.
Some voxels are marked as 1 in both To and Tb. As a prepro-
cess, we need to reset them to 0 in To, since otherwise the flood
fill will incorrectly penetrate into the interior of the object. This
preprocess can be easily performed by adding Tb to To with log-
ical operation GL AND INVERTED. Then we create two tem-
porary 3D textures, Tnew and Tmask, to store the outer voxels
newly found in the current iteration and the voxel mask for the
next iteration. For the first iteration, we check the neighbors of
all the outer voxels in To. If they are neither already identified
outer voxels in To nor boundary voxels in Tb, we add them to
both Tnew and To. Then we add all the neighbors of voxels
in Tnew to Tmask. We only need to check voxels in Tmask in
the next iteration. Usually after the first iteration, the number
of voxels we need to check will be greatly reduced. After each
iteration, we employ an occlusion query to count the number of
newly found voxels. If no new voxels are found, the flood fill is
terminated and now To contains all the outer voxels. The pseu-
docode for our flood fill algorithm is given in Algorithm 1. The
entire algorithm is implemented using three fragment shaders,
for excluding voxels in Tb from To, checking neighbor voxels,
and creating the mask respectively.

After all the outer voxels are identified, it becomes very easy
to compute a correct surface voxelization. We only need to find
those primitive voxels in Tb adjacent to an outer voxel. For
example, in Figure 11, the final outer boundary surface (solid
black lines) consists of primitive voxels (red) that have at least
one outer voxel (green or yellow) as a neighbor.

The performance of flood fill is determined by the volumetric
resolution and object complexity. For a resolution of 512×512×
512, it usually takes less than one second for most of the models
we have tested (see Table 3). For a resolution of 10243, the time
ranges from a few to tens of seconds, depending on how many
iterations we need to perform the flood fill.

Algorithm 1 FloodFill
input: To,Tb

output: To

To ← To − (To ∩ Tb)
create two 3D textures Tnew and Tmask;
clear all voxels of Tmask to 0;
for all voxel(i,j,k) do

if at least one neighbor has value 1 in To then
Tmask(i, j, k) = 1

end if
end for
repeat

clear all voxels of Tnew to 0
for all voxel(i,j,k) satisfying Tmask(i, j, k) = 1 do

if To(i, j, k) = 0 and Tb(i, j, k) = 0 then
To(i, j, k) = 1
Tnew(i, j, k) = 1

end if
end for
clear all voxels of Tmask to 0
for all voxel(i,j,k) do

if at least one neighbor has value 1 in Tnew then
Tmask(i, j, k) = 1

end if
end for

until ∀(i, j, k),Tnew(i, j, k) = 0 //test with occlusion query
delete Tnew and Tmask
return To

4.4. Robust Culling in the Presence of Floating Point Error

The flood fill algorithm requires the computed Minkowski
sum outer boundary to be “watertight,” i.e., there can be no
cracks in the outer boundary. Otherwise, the flood fill will
wrongly penetrate into the interior of the Minkowski sum
and make the voxelization algorithm fail. Theoretically, the
Minkowski sum will be watertight as long as the two input mod-
els are watertight. However, cracks may occur due to floating
point errors when performing surface primitive culling tests, as
explained below.

The core of the four propositions used for surface primitive
culling (section 3.1) relies on a 3D orientation test. For four
points a, b, c, and d in R3, Orient3D(a, b, c, d) returns a positive
value if a, b, and c appear in clockwise order when viewed from
d. To compute Orient3D(a, b, c, d), we need to evaluate the
sign of a 3 × 3 matrix determinant [32], as shown below.

Orient3D(a, b, c, d) =

∣∣∣∣∣∣∣∣
ax − dx ay − dy az − dz

bx − dx by − dy bz − dz

cx − dx cy − dy cz − dz

∣∣∣∣∣∣∣∣ (3)

The 3D orientation test may fail because of floating point
rounding errors. To be more specific, if the above determinant
is very close to zero (i.e., the four points are nearly coplanar),
the computed sign may be incorrect and the orientation test will
return a false answer. In such a case, some contributing surface
primitives will be wrongly culled out. For example, when we
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perform the culling test for a triangle primitive, if at least one of
its orientation tests returns a negative sign, we cull this triangle
primitive out; thus it is possible that we cull out a contributing
triangle primitive if one of its orientation tests wrongly returns
a negative sign due to rounding errors. This will in turn cause
cracks on the computed Minkowski sum boundary and the flood
fill will penetrate into the interior of the Minkowski sum. A par-
ticularly challenging example to illustrate the rounding errors
is to compute the Minkowski sum of a model and itself, where
many orientation tests should return exact 0s, but actually return
very small positive or negative values instead. Figure 12 (left)
shows the Minkowski sum of two identical tessellated spheres.
As we can see, quite a few boundary primitives are missing due
to rounding errors.

Figure 12: Computed Minkowski sum of two identical tessellated spheres,
without rounding error analysis (left), by using Shewchuk’s upper bound for
the orientation test error (center), and by using our upper bound for the orienta-
tion test error (right).

Exact arithmetic is one solution to the floating point error
problem. However, it comes at great performance expense, and
implementing exact arithmetic on GPUs is not trivial. In this
paper, we compute an upper bound of the rounding error for
equation (3). If the absolute value of the computed determinant
is greater than the upper bound, we can safely return its sign
as the result of the orientation test; otherwise, we are not sure
whether the computed sign is correct or not, so we just keep
this primitive without culling it. Compared to using exact arith-
metic, we do not continue to compute a more accurate result
when the determinant is within the error bound, which requires
much more complex computations.

An upper bound of the rounding error for equation (3) was
introduced by Shewchuk [32]. However we cannot directly ap-
ply it to our problem, because it is based on the assumption that
all the floating point numbers in the matrix (3) are free of round-
ing errors. In our case, each of these numbers is the sum of two
floating point quantities, one from each of the two input models,
so they are already contaminated by rounding errors. Figure 12
(center) shows that some primitives are still missing if we di-
rectly apply the upper bound in [32]. To derive the upper bound
for our problem, we need to consider every operation that can
introduce rounding errors, which in this case means replacing
each element in matrix (3) with the sum of two original input
numbers, as in equation (4), where numbers with subscript 1
or 2 represent coordinates from the first or second input model
respectively.

Further analysis indicates that equation (4) suffers from so-
called “subtractive cancellation,” which happens when two
nearly equal numbers contaminated by rounding errors are sub-
tracted. This causes relative errors already present in these two
numbers to be magnified. In equation (4), ax1 and dx1 are

x-coordinates of adjacent vertices from the first model. For
densely tessellated models, usually ax1 ≈ dx1, and similarly
ax2 ≈ dx2. Thus ax1 + ax2 ≈ dx1 + dx2. Subtractive cancella-
tion therefore occurs when we compute (ax1 + ax2)− (dx1 + dx2).
The same is true for all the nine elements of the matrix in (4).
To avoid this undesirable subtractive cancellation, we rewrite
equation (4) as (5). Since ax1 and dx1 are free of rounding er-
rors, there is no subtractive cancellation in ax1 − dx1. Further-
more, the revised formulation benefits from the fact that if two
inputs p and q are rounding-error free floating point numbers
and sufficiently close (to be more specific, q/2 ≤ p ≤ 2q), the
subtraction p − q is exact.

Rounding error analysis starts with computing ε, a quantity
called “unit roundoff,” which is half the distance between 1 and
the next larger representable floating point number. For IEEE
754 single precision arithmetic, ε = 2−24; for double precision,
ε = 2−53. Under IEEE floating point arithmetic, the relative
rounding error of all basic arithmetic operations (+, –, *, /) can-
not exceed the unit roundoff. More formally, if we use f l(·) to
denote the evaluation of an expression (·) in floating point arith-
metic, then for two rounding-error free floating point numbers
x and y, the arithmetic operations op (+, –, *, /) satisfy

f l(x op y) = (x op y)(1 + δ), |δ| ≤ ε. (6)

The above equation is the basic model for most rounding error
analysis.

We take a simple example, x2−y2, to explain how to perform
rounding error analysis using model (6). Note that there are
three floating point operations in the expression x2 − y2: square
of x, square of y, and subtraction. Applying model (6) to each
of the three operations, we have

f l(x2 − y2)
=

(
x2 (1 + δ1) − y2 (1 + δ2)

)
(1 + δ3)

= x2 (1 + δ1 + δ3 + δ1δ3) − y2 (1 + δ2 + δ3 + δ2δ3) ,

where |δi| ≤ ε, for i = 1, 2, and 3. Then the rounding error of
x2 − y2 is∣∣∣ f l(x2 − y2) − (x2 − y2)

∣∣∣
=

∣∣∣x2 (δ1 + δ3 + δ1δ3) − y2 (δ2 + δ3 + δ2δ3)
∣∣∣

≤ x2 |δ1 + δ3 + δ1δ3| + y2 |δ2 + δ3 + δ2δ3|

≤ (2ε + ε2)(x2 + y2).

(7)

Unfortunately, to carry out the rounding error analysis for
equation (5), it would be tedious and error-prone to compute
the rounding error step by step using model (6), as above, since
equation (5) requires 41 floating point operations, 18 more op-
erations than were analyzed in [32]. To simplify the process,
we use a convenient notation described in [33, chap. 3]:

〈k〉 =

k∏
i=1

(1 + δi), |δi| ≤ ε. (8)

Here 〈k〉 serves as a relative error counter. Note 〈 j〉 〈k〉 =

〈 j + k〉.
Again, we take x2 − y2 as an example. We have

f l(x2 − y2) =
(
x2 〈1〉 − y2 〈1〉

)
〈1〉

= x2 〈2〉 − y2 〈2〉 .
(9)
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Orient3D(a, b, c, d) =

∣∣∣∣∣∣∣∣
(ax1 + ax2) − (dx1 + dx2) (ay1 + ay2) − (dy1 + dy2) (az1 + az2) − (dz1 + dz2)
(bx1 + bx2) − (dx1 + dx2) (by1 + by2) − (dy1 + dy2) (bz1 + bz2) − (dz1 + dz2)
(cx1 + cx2) − (dx1 + dx2) (cy1 + cy2) − (dy1 + dy2) (cz1 + cz2) − (dz1 + dz2)

∣∣∣∣∣∣∣∣ (4)

=

∣∣∣∣∣∣∣∣
(ax1 − dx1) + (ax2 − dx2) (ay1 − dy1) + (ay2 − dy2) (az1 − dz1) + (az2 − dz2)
(bx1 − dx1) + (bx2 − dx2) (by1 − dy1) + (by2 − dy2) (bz1 − dz1) + (bz2 − dz2)
(cx1 − dx1) + (cx2 − dx2) (cy1 − dy1) + (cy2 − dy2) (cz1 − dz1) + (cz2 − dz2)

∣∣∣∣∣∣∣∣ (5)

The three 〈1〉s in the first step correspond to the three floating
point operations: square of x, square of y, and subtraction. So
the rounding error of x2 − y2 is bounded by∣∣∣ f l(x2 − y2) − (x2 − y2)

∣∣∣ =
∣∣∣x2 (〈2〉 − 1) − y2 (〈2〉 − 1)

∣∣∣
≤ |〈2〉 − 1| (x2 + y2).

Note that the two 〈2〉s in the first step represent different num-
bers, i.e., they have different δis in equation (8). This explains
why it is x2 + y2 instead of x2 − y2 in the second step.

As we can see from above, at the end of rounding error anal-
ysis, it is necessary to bound |〈k〉 − 1|. A useful inequality is
proved in [33, chap. 3]:

|〈k〉 − 1| ≤ 1.01kε, if kε ≤ 0.01. (10)

The condition kε ≤ 0.01 is always true unless k is enormous,
since ε is very small for IEEE floating point arithmetic. Using
this inequality we can compute an upper bound of the rounding
error of x2 − y2 as below:∣∣∣ f l(x2 − y2) − (x2 − y2)

∣∣∣ ≤ |〈2〉 − 1| (x2 + y2)
≤ 2.02ε(x2 + y2).

(11)

Compared to the upper bound in (7), the above upper bound de-
rived using the 〈k〉 notation is a little larger, but it greatly sim-
plifies the derivation process, especially when there are many
floating point operations, as in our case.

Following a similar process, we can derive an upper bound
for the rounding error of equation (5) as below:

|err| ≤ 11.11ε
[
adz · (bdx · cdy + cdx · bdy)

+bdz · (cdx · ady + adx · cdy)
+cdz · (adx · bdy + bdx · ady)

] (12)

where adz = |az1 − dz1| + |az2 − dz2|, etc. A detailed proof is
given in Appendix A.

When we perform culling tests, we check the computed de-
terminant of matrix (5) against its error bound computed using
the above inequality (12). If the absolute value of the determi-
nant is greater than the error bound, we return its sign as the
result of the orientation test; otherwise, we just keep the corre-
sponding primitive without culling it. Figure 12 (right) shows
the result after applying the adaptive 3D orientation tests. It
is easy to implement on GPUs, and does not cause any signif-
icant performance difference, since the rounding error check
affects only those orientation tests where the four points are
nearly coplanar, and flood fill dominates running times. For
example, for the inputs in Table 4,times are at most 2% slower

with robust culling. The number of remaining primitives after
culling increases very little (∼1%) compared with using orien-
tation tests without checking rounding error. Furthermore, we
simply check the error bound instead of computing an exact re-
sult, which would be much more time consuming.

4.5. Voxelization Results and Performance
Figure 13 shows the voxelization results of the four

Minkowski sums in Figure 6. The timings under two differ-
ent resolutions are given in Table 3. Here we use a Quadro FX
5800 GPU with 4 GB video memory. The program runs on
CUDA driver 3.0 and 32-bit Windows Vista. We can see that
for complex models with tens or hundreds of thousands of trian-
gles, we can compute their Minkowski sums within one minute.
The performance is mainly dominated by VBO generation and
flood fill. The VBO generation time is nearly proportional to
the sizes of the input models, since we need to test every sur-
face primitive. The flood fill time is determined by the shape
complexity of the Minkowski sum. To be more specific, if a
large portion of its boundary surface is invisible along all the
orthogonal directions from outside, the flood fill will take more
time. This can be easily seen by comparing bunny ⊕ ball and
Scooby ⊕ torus in Figure 6.

Figure 13: Voxelization (10243) of the four Minkowski sums in Figure 6.

Below we compare our voxelization approach with two other
recent approaches for approximate Minkowski sum computa-
tion, the distance-field based approach [5] and the point based
approach [19]. The approach in [5] outputs watertight boundary
surfaces that are extracted as isosurfaces from the distance field.
The point based approach [19] generates discrete sample points
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covering the Minkowski sum boundary. Our approach directly
creates surface and solid voxelizations of the Minkowski sum.
The accuracy of both the distance-field approach and our ap-
proach is governed by the resolution of the volumetric grid.
The resolutions used in the distance field approach range from
323 to 1283, lower than the 5123 and 10243 resolutions used in
our approach (distance fields require storing distances for each
cell vertex, whereas we only store one bit per cell). The accu-
racy of the point based approach is determined by the sampling
density. The sampling densities reported in [19] are equivalent
to volumetric resolutions ranged from 643 to 2563, also lower
than ours (again their samples have more than one bit of in-
formation). The distance-field approach guarantees that their
approximation has the same topology as the exact Minkowski
sum, while the point based approach and our approach do not
provide such topological guarantees.

We next compare the performance of our voxelization ap-
proach with the method proposed by Lien [9], which, to the best
of our knowledge, is the fastest previous implementation for
computing general 3D Minkowski sums. We use the same test
models as in [9] and report the test results in Table 4, without
floating point error checking (since Lien does not check floating
point errors). For Lien’s method, we use the timings reported
in [9] for comparison, which were obtained on a PC with two
Intel Core 2 CPUs at 2.13 GHz and 4 GB memory. Since our al-
gorithm runs completely on the GPU, its performance is mainly
determined by the GPU instead of the CPU. Here we again use
the Quadro FX 5800 GPU for our timings. From Table 4, we
can see that our approach is at least one order of magnitude
faster. Lien’s approach handles enclosed voids and generates
exact boundary representations except that it does not produce
low dimensional boundaries. Our voxelization approach is an
approximate method. However, we can achieve relatively high
accuracy by supporting a resolution of 10243. Most test models
used here are generated by polygonizing models with curved
surfaces. Even a simple curved object like a sphere would need
to be polygonized with about 5,000 triangles [34] in order to
match the accuracy of the voxelization at a resolution of 10243.

We also found, from the source code Lien kindly provided
to us for performance testing, that he also used Proposition 3
and 4 for primitive culling. However, they were not covered in
his paper.

5. Applications

The algorithm proposed in this paper can be used in a va-
riety of applications including geometric modeling (e.g., off-
setting and sweeping), mathematical morphological operations,
and assembly/disassembly. In this section we describe its appli-
cations in motion planning and penetration depth computation.

5.1. Motion Planning

Minkowski sum based motion planners usually involve com-
puting configuration spaces (C-spaces), introduced by Lozano-
Pérez for motion planning of a rigid object among physical ob-
stacles [1]. Every point in the C-space corresponds to a set of

independent parameters that characterize the position and ori-
entation of the rigid object. Free C-space is the set of configura-
tions where the object does not collide with the obstacles. The
motion planning problem is then reduced to finding a path in
the free C-space connecting the initial and goal configurations.

The free C-space is usually computed using Minkowski
sums. For P a translating object and Q the union of all the
obstacles, the free C-space is the complement of Q⊕−P, where
−P is P reflected about the origin. In Figure 14, the free C-space
of a plug and an outlet is computed using our voxelization algo-
rithm. This is a challenging problem since the three prongs of
the plug should go into the three corresponding holes of the out-
let. Our algorithm successfully found the narrow passageway in
the free C-space.

5.2. Penetration Depth Computation

Translational penetration depth is the minimum translational
distance to separate two intersecting objects. Mathematically,
the penetration depth dp of two objects A and B is defined as:

dp(A, B) = inf
{
‖d‖ : d ∈ R3, (A ⊕ d) ∩ B = ∅

}
. (13)

Penetration depth is often used in dynamic simulation, haptic
rendering, and tolerance verification of CAD models. One can
prove that the penetration depth is the same as the shortest dis-
tance from the origin to the boundary surface of B ⊕ −A. The
vector from the origin to the corresponding closest point also
gives the separation direction in which we can translate A away
from B. Kim et al. proposed an algorithm for computing pen-
etration depth based on this idea [35]. They compute only the
Minkowski sum of boundary surfaces and use a depth test to
find the closest point on the outer boundary.

Figure 15: Penetration depth between an intersecting gear (836 triangles) and
haptic probe (2498 triangles). The center figure shows gear ⊕ -probe. The red
line connects the origin and the closest point on the boundary surface. In the
right figure, the probe is translated along the computed vector to separate it from
the gear. The Minkowski sum is computed in 1.41 seconds and the penetration
depth is found in 0.07 second (5123 resolution).

We use surface voxelization of B ⊕ −A to compute the pen-
etration depth. We compute the distance from the origin to all
the surface voxels on each slice, and then perform a reduction
to find a minimum distance on this slice. Then we perform an-
other pass of reduction on these minimum distances to find the
final minimum distance. Both the reduction and distance com-
putation are implemented using fragment programs. Since a
fragment program can output a 4-tuple RGBA color, we use the
A channel to store the minimum distance and the RGB channels
to store the position of the closest voxel. Figure 15 shows an ex-
ample output of our implementation. Note that since our algo-
rithm only computes outer boundaries, it may give an incorrect
result for Minkowski sums with enclosed voids for applications
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A ⊕ B VBO Prim. Vox. Ortho. Fill Flood Fill #Flood Fill Total
512 1024 512 1024 512 1024 512 1024 512 1024

bunny (86,305) ⊕ ball (500) 1.39 0.43 1.37 0.28 0.70 0.41 2.74 1 4 2.51 6.19
pig (2,784) ⊕ horse (40,746) 3.26 0.15 0.66 0.13 0.55 0.49 5.76 23 111 4.02 10.23

Scooby (170,106) ⊕ torus (1,600) 6.84 0.18 0.68 0.12 0.54 0.78 8.15 44 153 7.92 16.21
dancing kids (78,706) ⊕ octopus (8,276) 15.24 0.30 1.12 0.21 0.63 0.69 8.74 41 185 16.44 25.74

Table 3: Timing for voxelizing the four Minkowski sums in Figure 6 under two different resolutions (in seconds), without floating point error checks. From left to
right, each column respectively shows the input models with their numbers of triangles, time for VBO generation (including primitive culling), time for primitive
voxelization, time for orthogonal fill, time for flood fill, number of flood fill iterations, and total time. The “512” and “1024” subcolumns represent 5123 and 10243

resolutions.

A B #tri of A #tri of B Lien’s #Flood Fill Ours Speedup
512 1024 512 1024 512 1024

inner ear frame 32,236 96 202.00 161 333 2.25 16.63 90× 12×
bull frame 12,396 96 289.30 120 240 1.96 13.82 148× 21×

grate1 grate2 540 942 318.50 0 0 1.88 7.66 169× 42×
clutch knot 2,116 992 347.00 0 0 0.99 4.84 351× 72×
bull knot 12,396 992 755.10 113 195 2.25 11.52 336× 66×

inner ear knot 32,236 992 920.80 18 140 2.03 9.70 454× 95×

Table 4: Performance comparison with Lien’s approach (in seconds). From left to right, each column respectively shows model A and B, number of triangles of A
and B, time of Lien’s approach, number of flood fill iterations, time of our approach, and the speedup. The “512” and “1024” subcolumns represent 5123 and 10243

resolutions.

such as tolerance verification. For haptic rendering, however,
the result without enclosed void(s) is actually the desired one
for calculating the separation direction.

6. Conclusions

We have presented a new approach for directly computing a
voxelization of the Minkowski sum of two polyhedral objects,
without having to compute a complete boundary representation.
By analyzing and adaptively bounding the floating point round-
ing errors in computing the predicate we use for culling surface
primitives, we guarantee that no primitives belonging to the ac-
tual Minkowski sum boundary will be mistakenly culled. Our
voxelization approach avoids complex 3D Boolean operations
by utilizing the GPU’s rasterization functionality. The whole al-
gorithm runs in parallel on the GPU and is at least one order of
magnitude faster than existing algorithms at the relatively high
resolution of 10243. It is memory efficient and able to handle
large geometric models.
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Appendix A. Proof of the Rounding Error Upper Bound
Given in Equation (12)

Let the right side of equation (5) be P. If we define

adz1 = az1 − dz1,
adz2 = az2 − dz2,
adz = adz1 + adz2,

(A.1)

etc., then P can be rewritten as

P =

∣∣∣∣∣∣∣∣
adx ady adz

bdx bdy bdz

cdx cdy cdz

∣∣∣∣∣∣∣∣ . (A.2)

From model (6) and notation (8), we have

f l(adz1) = (az1 − dz1) 〈1〉 = adz1 〈1〉
f l(adz2) = (az2 − dz2) 〈1〉 = adz2 〈1〉
f l(adz) =

(
f l(adz1) + f l(adz2)

)
〈1〉

= (adz1 〈1〉 + adz2 〈1〉) 〈1〉
= adz1 〈2〉 + adz2 〈2〉 . (A.3)

Thus the rounding error of adz is

|err(adz)| = | f l(adz) − adz|

= |adz1 〈2〉 + adz2 〈2〉 − adz1 − adz2|

= |adz1(〈2〉 − 1) + adz2(〈2〉 − 1)|
≤ |〈2〉 − 1| · (|adz1| + |adz2|) . (A.4)

If we define

adz = |adz1| + |adz2| , (A.5)

equation (A.4) can be rewritten as

|err(adz)| ≤ |〈2〉 − 1| · adz. (A.6)
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Figure 14: Application of our voxelized Minkowski sums in motion planning. From left to right: an outlet (2018 triangles), a plug (9262 triangles), a portion of the
C-space obstacle outlet ⊕ -plug, and the voxelization of the free C-space (the complement of the C-space obstacle) inside the red bounding box. The voxelization is
computed on a Quadro FX 5800 GPU at a resolution of 10243 within 7 seconds.

Note that the two 〈2〉s in equation (A.3) represent different
numbers, i.e., they have different δis in notation (8). For conve-
nience of notation, we do not distinguish the difference between
them and rewrite equation (A.3) as

f l(adz) = (adz1 + adz2) 〈2〉
= adz 〈2〉 . (A.7)

As we can see, by using this change of notation, we get a very
concise expression f l(adz) = adz 〈2〉. However, when we re-
cover the magnitude of the rounding error | f l(adz) − adz| from
equation (A.7), we must use adz, as shown in equation (A.6),
instead of |adz|. We will use the same convention in all the fol-
lowing derivations. Similarly, equations (A.6) and (A.7) hold
for all the elements in matrix (A.2).

Now we define the following variables that represent inter-
mediate steps in calculating P:

M1 = bdx · cdy − cdx · bdy (A.8)
M2 = cdx · ady − adx · cdy (A.9)
M3 = adx · bdy − bdx · ady (A.10)
N1 = adz · M1 (A.11)
N2 = bdz · M2 (A.12)
N3 = cdz · M3. (A.13)

Then we have

P = N1 + N2 + N3. (A.14)

Consider the rounding error of M1. We have

f l(M1)
=

(
f l(bdx) · f l(cdy) 〈1〉 − f l(cdx) · f l(bdy) 〈1〉

)
〈1〉

=
(
bdx 〈2〉 · cdy 〈2〉 〈1〉 − cdx 〈2〉 · bdy 〈2〉 〈1〉

)
〈1〉

=
(
bdx · cdy − cdx · bdy

)
〈6〉

= M1 〈6〉 .

(A.15)

The magnitude of the rounding error of M1 is

|err(M1)| = | f l(M1) − M1| ≤ |〈6〉 − 1| · M1, (A.16)

where

M1 = bdx · cdy + cdx · bdy. (A.17)

Here bdx etc. are defined in the same way as adz in equa-
tion (A.5). Note that the minus sign from equation (A.8) be-
comes plus in the above equation since we are taking absolute
values. Again we should use M1 instead of |M1| for the same
reason as we use adz in equation (A.6).

Now consider the rounding error of N1. We have

f l(N1) = f l(adz) · f l(M1) 〈1〉
= adz 〈2〉 · M1 〈6〉 〈1〉
= N1 〈9〉 . (A.18)

If we define

N1 = adz · M1, (A.19)

the rounding error of N1 is

|err(N1)| ≤ |〈9〉 − 1| · N1. (A.20)

Analogous results hold for N2 and N3.
Finally we consider the rounding error of P in equa-

tion (A.14). Note that its rounding error depends on the order
in which the two sums are performed. Here we assume that it
is computed from left to right, i.e., P = (N1 + N2) + N3. Later
we will loosen the error bound to eliminate the dependence on
the operation order. We have

f l(P) =

((
f l (N1) + f l (N2)

)
〈1〉 + f l (N3)

)
〈1〉

=
(
(N1 〈9〉 + N2 〈9〉) 〈1〉 + N3 〈9〉

)
〈1〉

= N1 〈11〉 + N2 〈11〉 + N3 〈10〉 . (A.21)

To make equation (A.21) symmetric for N1, N2 and N3, we can
add one extra 〈1〉 to N3. This will slightly loosen the error
bound, as shown below, but it makes the expression easier to
compute and also independent of the operation order:

|err(P)| = | f l(P) − P|

= |N1 〈11〉 + N2 〈11〉 + N3 〈10〉 − P|

≤ |N1 〈11〉 + N2 〈11〉 + N3 〈11〉 − P|

= |P 〈11〉 − P| . (A.22)

Now we define

P = N1 + N2 + N3. (A.23)
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The rounding error of P is

|err(P)| ≤ |〈11〉 − 1| P. (A.24)

Using inequality (10), we get

|err(P)| ≤ 11.11εP. (A.25)

This proves the error bound given in equation (12).
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