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ABSTRACT
For molding and casting processes, geometries that have

undercut-free parting directions (UFPDs) are preferred for man-
ufacturing. However, existing approaches either cannot identify
all UFPDs or cannot run at interactive speeds (the best exhaus-
tive algorithm, unimplemented, runs at O(n4) time theoretically).
Our proposed feature-based approach avoids testing the whole
Gaussian sphere of potential directions by first efficiently identify
all UFPDs for individual features such as extruded and revolved
features, thus significantly reducing test space and running time.
In this paper, we describe a fast algorithm to find all UFPDs
for solids of revolution. The algorithm is based on analyzing the
constructing 2D generator profiles, building on our previous re-
sults for 2-moldability analysis of polygons. The running time is
O(n), where n is the geometric complexity of the 2D generator
profile. For parts containing multiple solids of revolution, the
set of possible UFPDs can be significantly reduced based upon
an analysis of each such feature, efficiently identifying many as
non-2-moldable or reducing the search space for exhaustive al-
gorithms that find all UFPDs.

1 INTRODUCTION
In molding or casting manufacturing processes, the molten

material is shaped in a hollow mold. After the material solidifies,

∗Address all correspondence to this author.

(a) (b)

Figure 1. (a) Mold for a simple 2D part; (b) an orientation of the same

part with undercuts.

the part is ejected out of the mold. Simple reusable molds con-
sist of two rigid halves that move in opposite directions during
the mold closing and opening operations, to permit the part to be
extracted. The direction of motion of the mold halves is called
the parting direction. The two mold halves meet at the parting
surface (see Fig. 1(a)), which may be planar or non-planar. The
part geometry is said to be 2-moldable (monotone) in a direc-
tion ~d if the mold halves forming it can be translated to infinity
along ~d and −~d, respectively, without collision with the interior
of the part. The part shown in Fig. 1(a) is 2-moldable in the verti-
cal direction; the same part with a different orientation shown in
Fig. 1(b) is not 2-moldable in the vertical direction. Surfaces that
prevent the mold from releasing the part are called undercuts.

In the presence of undercuts, the mold may require extra
movable sections, which are inserted into the mold before the
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molten material is shaped, to form particular features that can-
not be formed using only two mold halves. These undercuts not
only increase the mold cost but also shorten the mold life. There-
fore, all else being equal, geometries with undercut-free parting
directions (UFPDs) are preferred.

Since approximately 80% of injection molding manufactur-
ing cost typically becomes fixed in the design stage, according
to our interviewees in the injection-molded part design industry,
and the flexibility to make design changes rapidly diminishes
later in the design cycle, it is vital that designers are provided
early feedback on their design. Our research concentrates on
finding all UFPDs at interactive speeds during the early design
stage to help designers maintain a geometry with at least one
UFPD.

2 RELATED WORK
Whether a given part geometry allows a UFPD has been

studied by many researchers. Previous research can be divided
into two approaches: heuristic or exhaustive.

2.1 Heuristic Approaches
Heuristic algorithms only tested a limited number of poten-

tial parting directions for 2-moldability, such as the three princi-
ple axes [1, 2], the bounding box axes [3], or the normal direc-
tions [4, 5]. If a UFPD is in the test set, the approach will find it;
otherwise, the approach will not find it.

Other researchers used concavity features or graph-based al-
gorithms. The concavity feature algorithms are based on first
performing a regularized subtraction of the object from its con-
vex hull, then identifying potential undercuts, which are called
“pockets.” Each “pocket” is a set of connected surfaces that be-
long to the original object but not to the convex hull [6–12]. The
optimal parting directions are chosen by different criteria such as
the number of undercuts and draft angles. This approach, how-
ever, cannot identify directions as UFPDs when portions of a sin-
gle “pocket” can only be formed by different halves of the mold,
which unfortunately is not uncommon in industry. Graph-based
algorithms recognized potential undercut features using bound-
ary representation graphs [13–17]. This approach works for de-
tecting depression or protrusion undercuts. However, it breaks
down for complex features, where depressions and protrusions
interact with each other.

2.2 Exhaustive Approaches
Exhaustive approaches to finding if any UFPDs exist for a

given geometry have been presented in both two and three di-
mensions. Rappaport and Rosenbloom gave an O(n) time algo-
rithm to determine if a 2D polygon with n vertices is 2-moldable
in arbitrary (not necessarily opposite) removal directions, and an
O(n logn) time algorithm for opposite removal directions [18].

In our previous work, we developed an O(n) time algorithm to
find all UFPDs for a 2D polygon bounded by straight line and/or
curved edges [19].

Bose and Bremner presented algorithms to determine the
existence of a UFPD for a genus-zero polyhedron [20]. Their
algorithms only find UFPDs with planar parting surfaces; UF-
PDs with non-planar parting surfaces are ignored. Ahn et al.
presented an exhaustive algorithm to find all the combinatorially
distinct UFPDs for a 3D (faceted) polyhedron in time O(n5 logn)
and a more efficient but more complicated algorithm that runs in
time O(n4). They divided the whole Gaussian sphere into con-
nected regions formed by an arrangement of great circles and
great circular arcs. Within each region, the polyhedron has the
same 2-moldability for all directions; hence only one direction
needs to be tested in each region, accomplished by testing the
vertices of the arrangement. In their paper, they also proved that
the O(n4) time complexity is optimal in the worst case by pre-
senting an example with Ω(n4) combinatorially distinct parting
directions. However, in practice, due to their algorithm’s com-
plexity, their implementation instead reverted to testing heuris-
tically chosen directions based on input edge orientations and
additional randomly chosen test directions. Elber et al. gave
an exact solution for a model bounded by NURBS surfaces, but
it is restricted to a completely smooth boundary that is C3 ev-
erywhere [21]. Khardekar et al. developed a programmable-
graphics-hardware accelerated algorithm to test the combinatori-
ally distinct UFPDs for a triangulated polyhedron. Their imple-
mentation can graphically display the undercut for a particular
parting direction in linear time with respect to the number of tri-
angular faces in the solid model. To find a UFPD, they tested
the face normal directions and the intersections of spherical con-
vex hulls [22], each of which bounds an inaccessible region on
the Gaussian sphere corresponding to directions in which a pair
of faces may occlude each other [23]. Although finding a single
UFPD is greatly accelerated using their algorithm, either finding
all UFPDs or definitely stating that no UFPDs exist takes O(n5)
time.

In summary, heuristic approaches cannot always find a di-
rection that is indeed a UFPD, and among the existing exhaus-
tive approaches for general 3D polyhedra, the best theoretical
time complexity is O(n4), which is not interactive for anything
beyond relatively simple geometries. To take advantage of the
completeness of the exhaustive algorithms and make them prac-
tically useful, speeding up the running time is thus the focus of
our research. In the next section, we will give an overview of our
proposed feature-based approach to finding all UFPDs.

3 FEATURE-BASED APPROACH TO FINDING ALL UF-
PDS
Currently most CAD systems use feature-based design,

which maintains a design history for later editing and reconstruc-
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tion. The overall geometry is obtained by performing Boolean
operations on a tree of features, commonly including extrusion,
revolution, sweep and loft features. These features are usually
constructed by first drawing 2D contours, which we call 2D gen-
erator profiles, and then performing 3D operations on the 2D
contours.

We observe that for unions of features, a direction is a UFPD
for the overall geometry only if it is a UFPD for every individ-
ual feature. Based on this observation, we have proposed a new
feature-based approach to finding all UFPDs by first finding a set
of UFPDs for each feature and then testing only the directions in
the intersection of all such sets using an exhaustive algorithm.
Using the proposed approach, the set of possible UFPDs for a
part containing individual features can be reduced for each fea-
ture added to the design tree, efficiently identifying many parts
that have no UFPDs and reducing the search space for exhaus-
tive algorithms that find all UFPDs. Moreover, the feature-based
analysis can be implemented incrementally. Potential UFPDs
for each individual feature are only computed once. Whenever
a new feature is added, the previously tested potential UFPDs
by the exhaustive algorithm is re-classified only against the new
feature before running the exhaustive algorithm again, saving re-
computation time when the overall geometry is updated. We have
presented our algorithm finding all UFPDs for extrusions in [24].
In this paper, we show how to find all UFPDs for solids of revo-
lution.

4 ASSUMPTIONS AND BACKGROUND
4.1 Assumptions

In this paper, we study solids of revolution that are formed
by rotating 2D generator profiles 360◦ around their coplanar
axes. We assume that the 2D generator profiles are polygons
composed of only straight line segments (so the cross sections
for the resulting solids of revolution are bounded by straight lines
and/or hyperbolic curves). The boundary of the 2D generator
profile does not cross but may touch the axis of revolution, which
is the case in CAD systems such as SolidWorks. Without loss of
generality, we assume that both the 2D generator profile and the
axis of revolution lie on the x-z plane and that the axis of revolu-
tion coincides with the z axis. When the 2D generator profile has
holes, the result is trivial since the solid of revolution contains
voids; no directions are UFPDs. Thus we only consider the case
where the 2D generator profile is a simple polygon that has no
holes. We also assume that the 2D generator profile is non-self-
intersecting.

For a polygon, possibly curved if it is the boundary of a cross
section for the solid of revolution, we use the right-hand rule
convention that the edges of the polygon are oriented in such a
way that the interior of the polygon lies on the left when moving
along the directed edges — that is, the boundary of the polygon
is oriented counterclockwise. The edge normals are unit vectors

pointing towards the exterior of the polygon.
To represent all directions in 2D Euclidean space, we use

a Gaussian circle; each direction in 2D can be represented by
a point on the Gaussian circle by normalizing the direction to a
unit vector and placing its tail at the origin. Similarly, we use a
Gaussian sphere to represent all possible directions in 3D. The
+z direction is mapped to the north pole and the −z direction is
mapped to the south pole.

4.2 UFPDs for 2D Curved Polygons
This section summarizes the 2-moldability analysis for 2D

curved polygons presented in our previous work [19], which is
used in our algorithm for finding all UFPDs for solids of revolu-
tion. For our 2D algorithm, we introduced a data structure called
the normal graph that captures the edge normals and their con-
nectivity, given a possibly curved polygon. By traveling around
the polygon counterclockwise, starting from any edge, the edge
normals are mapped onto the Gaussian circle. They are called
normal points. Each straight edge corresponds to one unique
normal point. Each simple (i.e., G1-continuous but without any
inflection points) curve corresponds to two normal points, de-
noting normals at the start point and end point. Normal points
may coincide with each other. Two sequentially mapped normal
points (not necessarily adjacent on the normal graph) represent-
ing different edges are connected by an arc less than 180◦ around
the Gaussian circle. The two connected normal points may rep-
resent two adjacent straight edges, one straight edge and the start
point of the (next) curved edge, the end point of the curved edge
and the (next) straight edge, the end point of the curved edge and
the start point of the (next) curved edge, or the last mapped nor-
mal point and the first mapped normal point. Two normal points
representing the start point and the end point of the same simple
curve are also connected by an arc, which is oriented counter-
clockwise if the curvature of the curve is positive and clockwise
if the curvature is negative (the curvature is positive if its cen-
ter lies on the left when moving along the curve, negative if its
center lies on the right). The arcs connecting the normal points
are called normal arcs. Normal arcs together with normal points
form the normal graph. An example normal graph is shown in
Fig. 2(b).

Each normal arc connects two normal points and each nor-
mal point is spanned by two arcs. If the two arcs spanning the
same normal point have opposite orientations (one counterclock-
wise and the other clockwise), the normal point is called a turn-
ing point. The normal graph can be simplified to a summary nor-
mal graph in order to optimize the speed when checking the 2-
moldability of the polygon. On the Gaussian circle, there are two
kinds of points. For some points, the ray starting from the center
of the Gaussian circle, passing through the point, and pointing to
infinity intersects the normal graph only once, shown by a thin
black line on the summary normal graph in Fig. 2(c); for other
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(a) (b) (c) (d) (e)

Figure 2. (a) A curved polygon; (b) normal graph (normal points and normal arcs expanded out from Gaussian circle for visualization purposes); (c)

summary normal graph; (d) Gaussian circle is divided into regions; (e) Result in (d) is rotated 90◦ CCW (UFPDs in thin green, non-UFPDs in thick blue).

points, the ray intersects the normal graph more than once, shown
by a thick red line in Fig. 2(c). Intersections at turning points do
not count. The classification of all points on the Gaussian circle
is shown on the summary normal graph (Fig. 2(c)).

In [19], we proved that if and only if a line L that passes
through the center of the Gaussian circle intersects the normal
graph exactly twice, the direction perpendicular to L is a UFPD.
Thus in the figure, the two intersections of L with the summary
normal graph, if it corresponds to a UFPD, will both have to be
with the thin black portion corresponding to a single intersection
with the original normal graph (see Fig. 2(c)). Lines where ei-
ther intersection is with the portion shown in thick red means the
direction perpendicular to L is a non-UFPD. Therefore, we can
divide the Gaussian circle into regions within which L intersects
the summary normal graph at exactly two thin black points (such
regions are denoted by a thin green line in Fig. 2(d) and may be
a single point), and regions within which L intersects the sum-
mary normal graph at one or more thick red points (such regions
are denoted by a thick blue line in Fig. 2(d)). The regions are
bounded by turning points or their reflections through the cen-
ter of the circle. The result is then rotated around the Gaussian
circle 90◦ to obtain the corresponding UFPDs. Thin green re-
gions correspond to UFPDs and thick blue regions correspond to
non-UFPDs (Fig. 2(e)).

5 FINDING ALL UFPDS FOR SOLIDS OF REVOLU-
TION
For a general polyhedron, a direction ~d is a UFPD if and only

if every line parallel to ~d intersects the boundary of the polyhe-
dron at most twice, where an intersection may be either a point
or a line segment [12, 26].

Previous research for finding all UFPDs for a solid of rev-
olution assumed that all UFPDs can be obtained by taking each
edge of concavity features on its 2D generator profile and find-
ing the intersection of associated hemi-circles on the Gaussian

(a) (b) (c)

Figure 3. (a) A solid of revolution with 2D generator profile shown; (b)

UFPDs parallel to the plane of the 2D generator profile, in thin green,

assumed by [25]; (c) A line l parallel to ~d intersects the boundary of a

cross section of the solid four times, which makes ~d a non-UFPD.

circle, where each edge defines a hemi-circle that is bounded by
a line parallel to the edge through the circle center and that lies on
the side of the line where the edge normal points. This intersec-
tion defines UFPDs for the 2D generator profile; it is then rotated
around the pole axis on the Gaussian sphere [25]. An example is
shown in Fig. 3(a), for which all proposed UFPDs parallel to the
plane of the 2D generator profile are shown in Fig. 3(b) by thin
green lines, with ~d being an example UFPD. However, checking
a hyperbolic conic section C parallel to the 2D generator pro-
file shows that there is a line l parallel to ~d that intersects the
boundary of C, and hence the boundary of the solid, more than
two times. Therefore, ~d is not actually a UFPD. Next we will
describe how we can correctly find all UFPDs for any solid of
revolution.

In [24], we proved that a direction ~d is a UFPD for a given
polyhedron if and only if ~d is a UFPD for all the cross sections
in a family parallel to ~d, where a family of cross sections are de-
fined as an infinite number of cross sections that are parallel to
each other. The particular orientation of a family of cross sec-
tions parallel to ~d can be selected arbitrarily. However, since it is
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(a) (b)

Figure 4. (a) A solid of revolution with 2D generator profile shown; (b) A

family of cross sections parallel to the axis of revolution and a test direction

that lies in the plane perpendicular to the 2D generator profile (only five

cross sections are shown).

enough to test only one family of cross sections parallel to ~d, for
solids of revolution, we use vertical cross sections that are par-
allel to the axis of revolution (z axis) and the test direction (see
Fig. 4).

Furthermore, the 2-moldability of a solid of revolution is cir-
cularly symmetric around the axis of revolution. If a direction is
a UFPD, all directions having the same latitude on the Gaussian
sphere are UFPDs and vice versa for non-UFPDs. Therefore, to
test the 2-moldability of solids of revolution, we only need to test
all the directions for 2-moldability that are parallel to one verti-
cal plane. Without loss of generality, we choose the x-z plane
and test the family of cross sections that are parallel to the x-z
plane for 2-moldability, since a direction parallel to the x-z plane
is a UFPD if and only if it is a UFPD for all cross sections in the
family. After all UFPDs parallel to the x-z plane are obtained, the
result is revolved around the pole axis on the Gaussian sphere to
form all the UFPDs for the solid of revolution (for an example,
see Fig. 5). The rest of the paper will focus on how to find all UF-
PDs that are parallel to the x-z plane. Unless otherwise specified,
the test direction and the cross sections considered are parallel to
the x-z plane for the remainder of the paper.

Note that the boundary of a cross section parallel to but not
in the x-z plane for solids of revolution is composed of hyper-
bolic segments. To analyze the cross section, we first show some
properties of hyperbolic conic sections.

5.1 Hyperbolic Conic Sections
We assume that the axis of a right circular cone is coinci-

dent with the z-axis. When intersected by a vertical plane par-
allel to the x-z plane, the cone produces a hyperbolic curve (see
Fig. 6(a)). If the cone is trimmed at the bottom by a horizontal
plane parallel to the x-y plane, the hyperbolic curve may also be
trimmed (see Fig. 6(b)). The asymptotes of all hyperbolic conic
sections that are parallel to the x-z plane are projected to the sil-

(a) (b) (c)

Figure 5. (a) A solid of revolution with its 2D generator profile outlined;

(b) All directions parallel to the x-z plane with UFPDs in light green and

non-UFPDs in dark blue; (c) Rotation of the result obtained in (b) on the

Gaussian sphere.

(a) (b)

Figure 6. (a) conic section is a hyperbola; (b) hyperbola is trimmed by a

horizontal plane.

houette lines of the cone on the x-z plane.
For a (possibly trimmed) cone, the following theorem holds.

The full proof is deferred to the full version of the paper due to
space restrictions.

Theorem 1. Given a direction ~d that is parallel to the x-z
plane, if the smaller angle between the z axis and ~d is larger
than the angle between the z axis and the asymptotes of the hy-
perbolic conic sections, we can always find a line parallel to ~d
such that it intersects a hyperbolic conic section (and hence the
conic surface) twice; otherwise, a line parallel to ~d intersects
any hyperbolic conic section at most once.

5.2 2-Moldability of Solids of Revolution
In this section, we show that the 2-moldability of solids of

revolution is constrained by the edges of the 2D generator pro-
files, which lie on the x-z plane.

Given a 2D generator profile for the solid of revolution, de-
note Ein = {ein} the set of edges on the 2D generator profile that
have normal directions pointing inward to the axis of revolution,
ein not on the axis of revolution. For each ein, denote θin the
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Figure 7. Line l intersects the solid of revolution at least four times.

smaller angle between ein and the z axis. We have the following
lemma.

Lemma 2. If a direction ~d, parallel to the x-z plane, is a UFPD
for the solid of revolution, denoting θ the smaller angle between
~d and the z axis, we have θ ≤ min(θin).

Proof. For any edge ein ∈ Ein, its revolution around the z axis is
a (possibly trimmed) cone. Without loss of generality, suppose
the normal direction of ein points upward. We will prove that any
direction ~d with θ > θin is not a UFPD for the solid of revolution.

From Theorem 1, for any direction ~d with θ > θin, there
always exists a line l parallel to ~d intersecting twice with a hy-
perbolic conic section of the cone formed by ein (Fig. 7). The
line l goes upward into the interior of the solid at one intersec-
tion A and exits the solid along the same direction. It also goes
downward into the interior of the solid at another intersection B
and exits the solid along the same direction. With at least two
entrances and two exits, l intersects the solid at least four times.
Therefore, ~d is not a UFPD for the solid of revolution.

In other words, if ~d is a UFPD for the solid of revolution, we
must have θ ≤ θin for all ein, that is, θ ≤ min(θin).

Since all UFPDs must have θ ≤ θin for any ein having a
normal direction pointing inward to the axis of revolution, we
say that UFPDs are bounded by the revolution of ein. For edges
Eout = {eout} with normal directions pointing away from the axis
of revolution, a similar statement holds:

Lemma 3. Given a UFPD ~d for the solid of revolution and an
edge eout on the 2D generator profile, if one or both endpoints of
eout are concave, ~d is either in a region of the Gaussian sphere
bounded by the revolution of eout or is a horizontal direction.

Proof. To prove this lemma, we have three cases: only the end
point of directed edge eout is concave, only the start point of eout

is concave, or both the start point and the end point of eout are
concave. Since the proofs for these three cases are similar, we
only provide the proof for the first case here to save space. With-
out loss of generality, we assume that the normal direction of eout

points upward.

With illustration in Fig. 8(a), we analyze the edge e1, whose
end point is concave. Call the polygon containing e1, on the
boundary of the central cross section, P. (This cross section con-
sists of the generator profile and its reflection, so it may contain
one or two disconnected polygons.) The local normal graph at e1

for P is illustrated in Fig. 8(b), with normal arcs connecting n0,
n1 and n2, the normals of edges e0, e1 and e2, respectively.

When the intersecting plane moves a little further away from
the x-z plane, the boundary of the cross section contains a pair
of symmetric hyperbolic segments corresponding to each edge
on the 2D generator profile. Denote the curved polygon on this
boundary, containing a set of connected hyperbolic segments, as
P′. The local normal graph for P′ has normal arcs connecting
n0e, n1s, n1e and n2s (see Fig. 8(b)), where nis and nie denote,
respectively, the normals at the start point and end point of a
hyperbolic segment on the cone formed by ei. Projected onto
the x-z plane, one of the asymptotes for the hyperbolic segment
coincides with ei. It can be shown from the equations of the hy-
perbolic segment and the line e1 that n1s and n1e will always be
closer to the +z direction on the normal graph than n1, with n1e

even closer than n1s. Since the end point of e1 is concave, n1e is
closer to the +z direction on the normal graph than n2s. There-
fore, the normal point n1e is a turning point. On the summary
normal graph, the arc between n1e and n1s or n2s, whichever is
closer to the z axis, will correspond to directions with more than
one intersections between the ray starting from the center of the
Gaussian circle and the normal graph. This arc, after rotating
90◦ counterclockwise, corresponds to a set of non-UFPDs (re-
call the example shown in Fig. 2). Note that the position of n1e

changes continuously from n1 (at the central plane) to infinitely
close to the +z direction (when the hyperbolic conic section on
the cone formed by e2 shrinks until it disappears) as the inter-
secting plane moves away from the x-z plane. The whole arc
on the summary normal graph between n1 and the +z direction
therefore corresponds to non-UFPDs after rotation, not includ-
ing the +z direction (see Fig. 8(c)). Since all cross sections are
symmetric relative to the z axis, the reflection of this arc about
the z axis also corresponds to non-UFPDs, after rotation. The
remaining part of the summary normal graph stays unclassified.
In a summary, the UFPDs are bounded by the revolution of e1.

The proof is similar for the other two cases.

In this section, we have shown how to pre-identify a set of
non-UFPDs using Lemma 2 and Lemma 3. The directions not
in this set are candidate UFPDs. In the next section, we further
classify these candidate UFPDs (as UFPDs or non-UFPDs) by
analyzing three different cases.

5.3 Types of Solids of Revolution
We can classify solids of revolution into three categories (see

Fig. 9), based on the properties of the closest element(s) (vertex
or edge) on the 2D generator profile to the axis of revolution. The
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(a) Type I (b) Type II (c) Type III

Figure 9. Types of revolution. Type I: single closest element is an edge or a vertex that lies on the axis of revolution; Type II: single closest element is an

edge or a vertex that does not lie on the axis of revolution; Type III: multiple closest elements that may or may not lie on the axis of revolution.

(a) (b) (c)

Figure 8. P: boundary of the central cross section; P’: boundary of a

non-central cross section. (a) Edge e1 points away from the axis of revo-

lution, with a concave end point; (b) local normal graphs at e1 (dark for P,

light for P′). Part of the summary normal graph is classified as the non-

UFPD region; (c) Identified non-UFPD sets, in thick blue, not including

horizontal directions (note 90◦ rotation from normal graph).

first two types have only one closest element. A type III solid of
revolution has multiple closest elements.

5.3.1 Type I. For type I revolutions, the closest element
on the 2D generator profile to the axis of revolution is a single
edge or vertex that lies on the axis (see Fig. 9(a)).

When the closest element is an edge, the boundary of the
central cross section intersects the axis exactly twice at the two
endpoints of the closest element and contains a single faceted
polygon. Any other cross section parallel to the x-z plane con-
tains a single curved polygon. For each of the cross sections
parallel to the x-z plane, we can thus build a normal graph for its
boundary.

When the closest element (edge) has an infinitesimal length,
it degenerates to a vertex. We can treat the boundary of the cen-
tral cross section as a simple polygon with two vertices having

the same coordinate values. The topology of the boundary of
the central cross section is the same as when the closest element
is an edge with an infinitesimal length. Since the normal graph
only captures the topology of polygons, the normal graph for the
boundary of the central cross section is not affected when we
treat the vertex (closest element) as an edge with infinitesimal
length. Cross sections other than the central cross section have
one curved boundary each. The normal graph is unique for every
cross section.

For the remainder of this section, we will thus only deal with
the generalized case. That is, the closest element is an edge on
the axis of revolution, with a finite or infinitesimal length.

Suppose we have the normal graphs for all the cross sections
parallel to the x-z plane. Then we analyze these normal graphs,
find a set of UFPDs for each and then calculate their intersection,
which forms all the UFPDs parallel to the x-z plane for the type
I solid of revolution. It turns out that this intersection always
equals the set of UFPDs for the boundary polygon of the central
cross section. This means that the central cross section deter-
mines the 2-moldability of the type I solid of revolution (after
the candidate UFPDs are pre-identified). The proof is provided
as follows.

Lemma 4. Assuming that a direction ~d, parallel to the x-z
plane, is a candidate UFPD for a type I solid of revolution, it
is indeed a UFPD if and only if it is also a UFPD for the bound-
ary polygon P of the central cross section.

Proof. =⇒ Suppose that ~d were a UFPD for the solid of revolu-
tion but not a UFPD for P. There exists a line that is parallel to ~d
and intersects P more than two times. Hence this line intersects
the revolved surface more than two times. Therefore, ~d is not a
UFPD for the solid of revolution.

⇐= Suppose ~d is a candidate UFPD for the solid of revolu-
tion and is a UFPD for P. We will show that ~d is also a UFPD
for the boundary polygon P′ of any other cross section. Thus ~d
is a UFPD for all cross sections of the solid and hence a UFPD
for the solid of revolution.
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(a) (b)

Figure 10. (a) Both endpoints of edge e1 of the generator profile P are

convex, a non-central cross section with boundary P′ is shaded; (b) local

normal graphs at e1 (dark for P, light for P′).

(a) (b) (c)

Figure 11. (a) Start point is convex and end point is concave for edge

e1; (b) Original local normal graphs at e1 (dark for P, light for P′); (c)

equivalent local normal graphs of (b).

When each edge ei on P corresponds to a straight or hyper-
bolic segment on P′ (that is, the number of edges on P equals
the number of edges on P′), according to the convexity of the
endpoints of ei, we have four cases.

1. Both the start point and the end point of ei are convex.
2. The start point of ei is convex and the end point is concave.
3. The start point of ei is concave and the end point is convex.
4. Both the start point and the end point of ei are concave.

For the first case when both endpoints of ei are convex,
the local normal graphs at e1 for both P and P′ are shown in
Fig. 10(b). It is obvious that the UFPDs for P and P′ are equiv-
alent since their summary normal graphs are identical locally
around the normal point n1.

For the second case (Fig. 11(a)), the local normal graphs at
e1 for P and P′ differ only in the pre-identified non-UFPD region
(Fig. 11(b), bounded by the symmetric arc around the z axis),
which is derived according to Section 5.2. Since directions cor-
responding to this region are already classified as non-UFPDs, ~d

(a) (b)

Figure 12. The boundary of the cross section has fewer edges as it

moves away from the axis of revolution.

(a) (b)

Figure 13. (a) Central cross section when the closest element is a single

edge; (b) central cross section when the closest element is a single vertex

(for purposes of visualization, the two coinciding vertices on the axis of

revolution are pulled apart slightly).

is not in this region. Thus this portion of the normal graph can
be ignored and simplified by moving the turning point n1e onto
the boundary of this region. The equivalent local normal graph
at e1 for P′, shown in Fig. 11(c), is thus the same as the local
normal graph for P. Therefore, given that ~d is a UFPD for P and
a candidate UFPD for the solid, ~d is also a UFPD for P′.

Case 3 and case 4 can be explained using the same logic.
When the number of edges of P′ is smaller than that of P,

the normal graph can be analyzed similarly. But there are fewer
normal arcs on the normal graph for P′ than for P since the hy-
perbolic segments corresponding to some edges on the 2D gen-
erator profile will disappear as the intersecting plane moves con-
tinuously away from the x-z plane (see Fig. 12). However, the
same logic still applies. Therefore, we can use the boundary of
the central cross section alone to further classify the candidate
UFPDs.

The boundary polygon of the central cross section can be
constructed directly from the 2D generator profile by taking the
boundary of the union of the interiors of the 2D generator profile
and its reflection, connectivity taken as shown in Fig. 13(b) when
the closest element is a single vertex.
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(a) (b) (c)

Figure 14. (a) An example of type II solid of revolution; (b) central cross

section; (c) a cross section which is s− ε away from the x-z plane (line l
is parallel to the test direction and intersects the cross section more than

two times).

5.3.2 Type II. For type II revolutions, the closest ele-
ment on the 2D generator profile to the axis of revolution is a
single edge or vertex that does not lie on the axis (see Fig. 9(b)).

When the closest element is an edge e, the only possible
UFPDs are the +z and −z directions. This can be easily proved.
Suppose the distance between e and the axis of revolution is s.
Consider the vertical intersecting plane that is s−ε away from the
x-z plane, ε > 0. When ε is small enough, for any given direction
~d (except the +z and −z directions), there always exists a line l
parallel to ~d intersecting the boundary of the cross section more
than two times (see Fig. 14).

We now analyze the only remaining candidate UFPDs, i.e.,
the +z and −z directions, and show how they can be tested by
converting the geometry to a type I revolution with equivalent
UFPDs.

Suppose V is a point on e, not necessarily one of its end-
points. Call its projection onto the axis of revolution O (see
Fig. 15(a)). As we prove below, inserting two oppositely ori-
ented edges VO and OV into the 2D generator profile does not
affect the 2-moldability of the solid of revolution in the +z and
−z directions. The additional two edges are revolved to form two
disks, with normals pointing in the +z and −z directions, respec-
tively. Since e is the closest element on the 2D generator profile
to the axis of revolution, these two disks are neither occluded
by nor occlude any part of the original solid of revolution, when
viewed from the +z and −z directions, respectively. Hence they
do not add new undercuts or change existing undercuts. That
is, the 2-moldability of the solid of revolution in the +z and −z
directions is not changed. Directions other than the +z and −z
directions remain non-UFPDs.

If we weld the two new edges at their open vertices, the
2D generator profile becomes that for a type I revolution. As
is proved in the above section, the boundary of the central cross
section can be easily constructed and uniquely determines the
2-moldability of the solid of revolution (see Fig. 15(a)). Note

(a) (b) (c)

Figure 16. Type III solids of revolution. (a) Closest elements lie on the

axis of revolution; (b) closest elements does not lie on the axis of revolu-

tion; (c) a cross section, which is s + ε away from the x-z plane, has a

hole.

that directions other than the +z and −z directions are obviously
non-UFPDs for the constructed central cross section.

When the closest element is a vertex V , suppose the projec-
tion of V on the axis is O (see Fig. 15(b)). Similarly, adding
two edges VO and OV (see Fig. 15(b)) to the 2D generator pro-
file does not change the 2-moldability of the solid of revolu-
tion. That is, up-facets (respectively, down-facets) remain up-
facets (respectively, down-facets), no new undercuts are added,
and no existing undercuts are affected, relative to a given candi-
date UFPD (the pre-identified non-UFPDs remain non-UFPDs).
Thus we again convert the geometry to a type I revolution with
equivalent UFPDs.

5.3.3 Type III. For type III solids of revolution, there
are multiple closest elements (edges or vertices) on the 2D gen-
erator profile to the axis of revolution.

When the closest elements lie on the axis, no directions are
UFPDs for the solid of revolution since one or more holes are
present on the central cross section (see Fig. 16(a) for an exam-
ple). No directions are UFPDs for the central cross section and
hence for the solid of revolution.

When these multiple closest elements do not lie on the axis
of revolution, suppose the distance of the closest elements to the
axis of revolution is s. Consider the intersecting plane that is
s+ ε away from the x-z plane, ε > 0. When ε is not too large, the
cross section has a hole in the middle (see Fig. 16(c)). Therefore,
no directions are UFPDs for this cross section and hence for the
solid of revolution.

In summary, type III solids of revolution are not 2-moldable
in any direction.

5.4 Summary and Algorithm
From the above discussion, we can conclude that the 2-

moldability analysis on a solid of revolution can be obtained by
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(a) (b)

Figure 15. Type II solid of revolution. (a) Modified central cross section when the closest element is a single edge; (b) modified central cross section when

the closest element is a single vertex. For purposes of visualization, coinciding edges are pulled apart slightly.

Input : Pg, 2D generator profile on the x-z plane;
z, axis of revolution.

Output : Set of UFPDs Φ parallel to the x-z plane.

Traveling around Pg to find all the closest elements Ec.
if sizeof(Ec) > 1 then

Solid of revolution is type III.
Return Φ =null.

else
Solid of revolution is type I or II.
Φ1 = 90◦.
foreach edge ei on Pg, if normal of ei points toward
z or at least one endpoint of ei is concave and
normal of ei points away from z do

θ = angle between ei and z axis.
Φ1 = min(Φ1,θ).

end
Construct polygon P according to Fig. 13 (type I)
or Fig. 15 (type II).
Find all UFPDs Φ2 for P using 2D algorithm.
if no edge on Pg has a normal pointing toward z
then

Return Φ = ([90◦−Φ1,90◦+Φ1]
S

[270◦−
Φ1,270◦ +Φ1])

T

Φ2.
else

Return Φ = ([90◦−Φ1,90◦+Φ1]
S

[270◦−
Φ1,270◦ +Φ1]

S

[0◦,0◦]
S

[180◦,180◦])
T

Φ2.
end

end

Algorithm 1: FindingUFPDsForRevolution()

performing analysis on its 2D generator profile only. The algo-
rithm is summarized in the Algorithm 1 box.

In our previous work, we proved that finding all UFPDs for
a polygon P takes O(n) time [19]. Extracting all the closest ele-
ments and finding the minimum Φ1 also takes O(n) time. There-
fore, the overall algorithm for finding all UFPDs for a solid of

revolution has a time complexity of O(n).

6 CONCLUSIONS
Finding all UFPDs at interactive speeds gives designers

maximum flexibility choosing a parting direction early in the
design process, when redesign cost is the lowest. Existing ap-
proaches either cannot find all UFPDs (heuristic approaches) or
cannot run at interactive speeds for anything beyond relatively
simple part geometries (exhaustive approaches). We have pro-
posed a new feature-based approach to reduce the time to find all
UFPDs, taking advantage of feature-based CAD systems. Since
UFPDs are constrained by each individual feature composing the
geometry, only when a direction is a UFPD for all features, is it a
potential UFPD for the overall geometry. Thus only these direc-
tions need to be tested using an exhaustive algorithm; otherwise,
the direction is directly classified as a non-UFPD for the overall
geometry.

In this paper, we showed how to find all UFPDs for a solid
of revolution via analyzing its 2D generator profile in O(n) time.
These UFPDs were previously found correctly only by exhaus-
tive algorithms for arbitrary parts that took at least O(n4) time.
Since revolved features often greatly constrain the potential UF-
PDs for the overall geometry, the test space on the Gaussian
sphere becomes significantly smaller than the entire Gaussian
sphere that previously had to be tested. If no directions are UF-
PDs for all revolved features, the part can be immediately iden-
tified as non-2-moldable without further testing; in this case,
designers can either go back to redesign the part geometry or
choose an optimal parting direction for a mold with more than
two pieces based on other criteria such as the number of under-
cuts or undercut volume.

Some people argue that designers usually use directions that
are aligned with or normal to revolution axis directions as part-
ing directions when revolved features exist. While this is a fact
in current practice, it is because these are the directions whose 2-
moldability a human designer can most easily evaluate. Our al-
gorithm automatically provides designers with more alternative
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(a)

Figure 17. An example containing a revolved feature, with the 2D gen-

erator profile highlighted. The only UFPD for the example geometry is ~d,

which is neither the revolution axis direction nor one of its normal direc-

tions.

UFPDs to choose from. With candidate parting directions pre-
defined as revolution axis directions or their normal directions,
either the design innovation and alternatives are limited or the
manufacturing cost rises because of the undercuts. Fig. 17 shows
an example containing a revolved feature. The geometry would
cause undercuts if the parting direction is defined as the revolu-
tion axis direction or one of its normal directions. Our algorithm
finds the UFPD, which enables the part to be manufactured at a
lower cost.

Whether undercuts exist is not the only criteria when choos-
ing an optimal parting direction for a complex geometry. Other
factors, such as the complexity of the parting surface, also play an
important role [1,27]. Generally UFPDs are the preferred parting
directions. But designers and manufacturers may choose non-
UFPDs with planar parting surfaces instead if all UFPDs require
complex non-planar parting surfaces. Our future work aims to
define optimal parting directions for an arbitrary geometry based
on multiple criteria as well as exploring 2-moldability analysis
on more complex feature types such as sweeps and lofts.
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