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Abstract

We present new programmable graphics hardware accelerated algorithms to test the 2-moldability of geometric parts and assist with part

redesign. These algorithms efficiently identify and graphically display undercuts as well as minimum and insufficient draft angles. Their running

times grow only linearly with respect to the number of facets in the solid model, making them efficient subroutines for our algorithms that test

whether a tessellated CAD model can be manufactured in a two-part mold. We have developed and implemented two such algorithms to choose

candidate directions to test for 2-moldability using accessibility analysis and Gauss maps. The efficiency of these algorithms lies in the fact that

they identify groups of candidate directions such that if any one direction in the group is undercut-free, all are, or if any one is not undercut-free,

none are. We examine trade-offs between the algorithms’ speed, accuracy, and whether they guarantee that an undercut-free direction will be

found for a part if one exists.
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1. Introduction

In molding and casting manufacturing processes, molten

raw material is shaped in molds from which the resulting part

must be removed after solidification. Typical rigid, reusable

molds consist of two main halves, which are separated in

opposite directions (the positive and negative mold ‘parting

direction’) to remove the part. For a given parting direction, the

part must be free from undercut features that would make it

impossible to define mold halves that could be separated from

the part when translated along the positive and negative mold

parting directions without colliding with it (see Fig. 1). For

small-scale, manual production, one could imagine a worker

simultaneously translating and rotating the mold halves along

arbitrary paths during removal, but for automated mass

production, the two mold halves are typically translated only,

always in opposite directions.

We call an object ‘2-moldable’ in a potential mold parting

direction if it has no undercuts relative to that direction; the

direction is called an undercut-free direction for that object.

Formally, an object is 2-moldable in a direction ðd if the
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complement of the object can be split into two parts such that

one part can be translated to infinity in the direction ðd and the

other in the directionKðd without colliding with the object [1].

Note that if the object is 2-moldable in a direction ðd , then it is

also 2-moldable in Kðd . For a convex part all directions are

undercut-free directions. For other part geometries, there may

be no undercut-free direction corresponding to a two-part mold

with opposite removal directions; more expensive multi-piece

molds with cores and inserts (possibly including threaded

inserts) would be required for such parts. In this paper, we

present algorithms that address the needs of a CAD user aiming

for a part design that can be produced the most economically,

in a two-part mold; we leave multi-piece molds to future work.

During the design process, the mold parting direction should

be determined before detail design features like the extruded

bosses and ribs in Fig. 1 are added. Once this mold parting

direction is chosen, there is a need for a real-time tool that will

warn the designer as soon as a change is made that makes the

part non-2-moldable in the chosen direction. Existing CPU-

based algorithms that check for undercuts are too slow to run

continuously in the background for complex parts; thus current

commercial CAD systems rely on the user to remember to

perform the check.

Earlier in the design process, during the conceptual design

phase, feedback about whether any undercut-free directions

exist for the proposed geometry is helpful. During this stage,

identifying multiple undercut-free directions is useful because
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Fig. 1. Rendering with orthographic projection of a part that is not 2-moldable

in the indicated direction because of undercut features on the lower cylindrical

bosses and their attached strengthening ribs (highlighted in red) (for

interpretation of the reference to colour in this legend, the reader is referred

to the web version of this article).
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a designer can then choose the best possible direction in terms

of manufacturing cost and quality. In this paper, we describe

efficient graphics-hardware accelerated algorithms to solve the

above problems for tessellated input geometry.
2. Background and related work

Recently, commodity graphics hardware has seen enormous

improvements in terms of programmability and computational

speed. Due to these improvements, graphics processing units

(GPUs) have become a viable alternative to CPUs for general

purpose computing. Furthermore, ‘Moore’s law’ seems to

apply to GPUs but with an even faster improvement rate than

for CPUs over the past decade and half: a speedup of roughly

2.4 times a year for GPUs, compared to a 1.7 times speedup per

year for CPUs over the same period [34]. If these sustained

trends continue, the performance advantage for algorithms that

take advantage of graphics hardware will continue to grow.

Previous applications of graphics hardware to manufacturing

and inspection problems used only the hidden surface removal

capabilities of the graphics hardware [2,23,24,29,41,43], but

today’s programmable hardware can speed up more complex

calculations [15]. The preliminary results we described in [26]

and the conference version of this paper [25] were the first

application of the programmable capabilities of GPUs to

2-moldability that we are aware of.

Current programmable graphics cards allow general

purpose computing in two stages of the graphics rendering

pipeline. A vertex processor stage executes a user-defined

vertex program in parallel on every vertex passed to the

rendering pipeline. A vertex program can change the position,

normal, color, and texture coordinates of each vertex. The

results of these calculations are passed on to the rasterization

stage, where normals, colors, and texture coordinates are

interpolated inside the triangles the vertices define. Then a

pixel processor executes a user-defined fragment program at

every pixel, taking the texture and interpolated vertex data as
input and setting the color and the depth value of that pixel as

output.

There is a large body of literature on checking 2-moldability

and finding undercut-free directions. In early work in this area,

many researchers who considered the problem of finding a

casting direction for a two-part mold for a given geometry only

look at a limited number of potential parting directions. Ravi

and Srinivasan [38] and Wong et al. [46] only consider parting

directions along the three principle axes. Chen [8] looks only at

the axes of a minimum bounding box. Hui and Tan [22] use a

heuristic search approach, which even though not exhaustive,

shows significant performance hits on more complex parts with

curved surfaces.

Dhaliwal et al. [10] consider all access directions in their

algorithm for the automated design of multi-piece sacrificial

molds. However, this class of molds is more appropriate for

prototyping than for mass production since the molds are

destroyed for every part. For their application the problem

becomes one of decomposing the mold into machinable pieces

rather than de-molding the part. Other researchers have

explored automating the design of multi-piece molds and

rapid tooling using layered manufacturing [6,7], or shape

deposition modeling for sacrificial molds [44].

Calculating visibility is perhaps the most promising

approach to finding all 2-moldable directions for parts to be

made in permanent molds. Chen et al. introduce the term

visibility map to the de-moldability literature in a paper that

shows how to minimize the number of cores in parts that cannot

necessarily be made in a two-part mold [5]. They find potential

undercuts by performing a regularized Boolean subtraction

[40] of the part from its convex hull. Woo’s more general paper

presents the concept of using convex visibility maps that

partition the Gaussian sphere, describing their application to

different classes of visibility problems in manufacturing [47].

He relates the degrees of freedom of the surface to be

manufactured to the number of manufacturing setups, and

shows how clustering of overlapping visibility maps for

different surfaces can be used to reduce the total number of

setups required for machining. In a subsequent paper Chen and

Chou use augmented visibility maps to represent visibility for

geometry that does not admit a two-part mold and describe how

potential undercuts that cannot be handled by a single core can

be subdivided to show a designer what would need to be

changed to make a design moldable [4]. A related approach

calculates visibility cones [11] and uses them for planning

permanent multi-piece molds [36].

A number of papers look to graph-based feature recognition

methods to find potential undercuts [17,18,20,51]. Unfortu-

nately graph-based methods break down for interacting

features, a shortcoming that [50] address by using a hybrid

approach that does not rely exclusively on graph matching.

Wuerger and Gadh [48] present an algorithm based on convex

hull differences, similar to the [5] approach, to find a parting

direction for a two-part mold, but like its predecessors it will

not find a parting direction in all cases where one exists. Their

more significant contribution is in their companion paper [49],

the first we are aware of to describe the implementation of a



Fig. 2. 2D example for undercut detection.
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discretized representation of a Gauss map. This data structure

gives them much better running times than their contempor-

aries report.

Provably correct algorithms for 2-moldability can be found

in the computational geometry literature. Rappaport and

Rosenbloom [37] present an O(n log n) time algorithm

(unimplemented) for the 2D case of finding if a polygon is

2-moldable. Ahn et al. combines strong theory with a partial

implementation [1]. They show that a definitive answer to

whether a polyhedron is 2-moldable in any direction can be

obtained via building an arrangement on a sphere as a function

of facet normals and orientations where facets may start to

obscure each other. Their implementation, however, only tests

a heuristically chosen set of directions because of the

complexity of implementation and long running time of the

complete algorithm. These algorithms all work with tessellated

geometry; for curves, [13,32] analyze 2D curved spline input,

and for 3D [12] describe an algorithm with both theoretical

guarantees and an implementation, but it is limited to C3

continuous NURBS surfaces only.

3. Checking a direction for undercuts

This section describes our graphics-hardware accelerated

algorithms for checking a part when the mold parting direction

is given. These algorithms efficiently identify and graphically

display undercuts and minimum and insufficient draft angles.

3.1. Undercut detection

For simplicity, we describe our undercut detection algorithm

assuming a vertical mold parting direction. We define a part

facet as an ‘up-facet’ with respect to a given removal direction ðd
if the dot product between the facet’s outward facing surface

normal and ðd is greater than zero. For a vertical mold parting

direction, take ðd to be theCz-axis.We call the projection of two

facets ‘overlapping’ if the interiors of their projections are non-

disjoint (note that if the projections touch only at a vertex or

along an edge we do not call this ‘overlap’).

Ahn et al. [1] proved that a given part geometry is undercut-

free relative to a vertical mold parting direction if and only if it

is vertically monotone, i.e. there exists no vertical line that

intersects the part interior in more than one disconnected

interval. We observe that as a consequence, for a part that is not

vertically monotone, vertical lines at the non-vertically-

monotone locations will intersect the interior of at least two

up-facets. Thus if we project the up-facets of the boundary

representation of the part orthographically onto a plane normal

to the mold parting direction, the part is undercut-free in this

direction if and only if none of the projections of the up-facets

overlap.

Kwong observed that this test is simply a visibility test

[1,30]. If all the up-facets are completely visible when the

object is rendered with orthographic projection, looking down

with the eye-point above the object, the object is undercut-free

relative to a vertical parting direction. Fig. 2 shows a two

dimensional example for a polygon (assume the edges are
oriented with normals pointing to the exterior of the polygon).

If the part shown is viewed from a point vertically above, the

‘up-edge’ v1v2 will be occluded by up-edges v5v6 and v6v7;

thus this contour is not undercut-free in the vertical direction.

Thus determining whether or not a part is undercut-free in a

given direction reduces to checking whether there are any

partially or completely invisible up-facets when the object is

looked upon from the mold removal direction. We solve this

visibility problem efficiently with the help of graphics

hardware. The inputs to the algorithm are the part geometry

and the mold parting direction ðd . The algorithm is as follows:

1. Enable back face culling and standard depth test

2. Set the view matrix parameters

a. orthographic projection

b. viewing direction –d

c. eye point offset Cd from part bounds

d. view frustum to encompass part bounds

3. Render the geometry

4. Keep z-buffer but clear frame-buffer

5. Re-render the geometry with depth test set to GL_GREA-

TER

6. Call an occlusion query to test if any pixels were rendered

in the second pass

After the first rendering pass (step 3), the z-buffer will hold

the distance from the plane of the camera to the visible up-facet

for each pixel. During the second pass (step 5), only the

(portions of) up-facets that were invisible in the first pass will

be rendered. Thus if any pixels are rendered in the second pass,

the object is not undercut-free in direction ðd . On recent

graphics cards, we can efficiently check if any pixels were

rendered in this pass by using their occlusion query

functionality, rather than reading back the entire frame-buffer.

This makes using the frame-buffer more efficient than using the

stencil-buffer, for example. Fig. 3 shows an example of the

frame-buffer after step 3 and again after step 5 when the

algorithm is run on the part shown with a vertical mold parting

direction in Fig. 1.

Our implementation of this algorithm, running on a

QuadroFX 3000 GPU, was able to test for the presence of

undercuts on parts with over 20,000 facets in less than one

millisecond per direction tested using a 256!256 frame-buffer

(Fig. 4). Our direction testing rate ranged from 18,200 to 1040

directions per second, on parts with 40–20,676 faces,

respectively. Our running times grow only linearly with input

size, in contrast to the O(n log n) growth rate of the Ahn et al.

algorithm for testing a direction for 2-moldability (by



Fig. 3. Screen shots of the frame-buffer showing pixels rendered after the first

(left) and second pass (right) of the algorithm.

R. Khardekar et al. / Computer-Aided Design 38 (2006) 327–341330
calculating the object silhouette, projecting it orthographically,

and determining if the projected silhouette would be self-

intersecting after an epsilon-shrinking operation). The running

times for our algorithm on this GPU were over 200 times faster

compared to running on the same machine with an older GPU

that does not support vertex and fragment programs, so that the

CPU (AMD Athlon 1.8 GHz) then had to execute them.

Running just the first stage of the Ahn et al. algorithm in

software (extracting the silhouette) took five to six times longer

than our entire hardware-accelerated algorithm. Faster silhou-

ette extraction might be achieved using more sophisticated sub-

linear algorithms [35], but the O(n log n) plane sweep

intersection testing still dominates the theoretical complexity

of the Ahn et al. algorithm. (GPU algorithms for silhouette

extraction designed for rendering, such as [31], do not seem

appropriate for 2-moldability checking due to long vertex

programs that slow performance for complex models and the

difficulty of accurately performing the epsilon-shrinking and

self-intersection tests on a low resolution, rendered silhouette.)
3.2. Highlighting undercut features

Once it is determined that an object is not 2-moldable for a

given mold-removal direction, we would like to highlight the
Fig. 4. Running times for 2-moldability checking (QuadroFX 3000 GPU, AMD

Athlon 1.8 GHz CPU).
undercuts so that the designer can make the necessary

corrections. Up-facet pixels that are rendered in the second

pass of the two pass algorithm, along with down-facet pixels

that are invisible if the object is viewed from the opposite

direction, are the undercuts, which should be highlighted. If the

object is illuminated by two light sources located at infinity in

the directions ðd and Kðd , then the undercut surfaces will be

exactly those that are in shadow. For the 2D example in Fig. 2,

if the object was illuminated from vertically above and below,

the edges v1v2, v8v1, and portions of v7v8 would be in

shadow; those edges are the undercut. We can perform this

highlighting in real time using the depth texture capability of

graphics hardware as detailed below. Depth textures (a.k.a.

shadow textures) are textures that store depth values at each

pixel location, allowing a second depth test for each pixel as

described in [14].

As a preprocessing step before we can display the part with

its undercut features highlighted, we perform the following

procedure twice, once from the positive mold parting direction

and once from the negative mold parting direction. First the

scene is projected orthographically with the camera placed

above the part, aligned along the positive mold parting

direction, and the view direction set towards the object. The

z-buffer obtained after this rendering pass is transferred to a

depth texture, which will now hold the distance from the plane

of the camera to the part for each pixel of the resulting image.

We also read back and store the orthogonal viewing matrix

associated with this camera position for later use in our vertex

program. This procedure is repeated from the opposite mold

parting direction.

We can then allow the designer to rotate the object and

examine the undercuts in real time, accessing the same two

depth textures previously calculated to highlight the currently

visible undercuts for any instantaneous viewing direction. We

use a vertex program to transform the vertices of each polygon

by the two previously generated orthogonal viewing trans-

formations in turn. These two transformed positions are stored

as two texture coordinates for each vertex. After interpolation

performed during rasterization, the first two components of a

fragment’s texture coordinate give the location of that pixel in

the associated depth texture and the third component gives the

depth of the geometry associated with that pixel from the

positive (alternately, negative) mold parting direction view-

point that was used to generate that depth texture. A fragment

program checks the depth texture values of both sets of

coordinates. If the pixel depth is more than the depth texture

value for both the stored textures, then the pixel was occluded

by some other geometry from both the positive and negative

mold parting directions; we highlight it in red to indicate that it

is on a non-2-moldable undercut.

Along with the above computations, the regular lighting

computations needed for the scene are also carried out by the

vertex and fragment programs. The positions of the lights in

the scene are set as constant parameters to the vertex program.

We compute the lighting coefficient of the vertices in the vertex

program described above and output it in the color attribute of

the vertex. In the fragment program, we choose the unlit color



Fig. 5. Performance for undercut highlighting on 256 MB NVIDIA GeGorceFX 6800 Go card. Models courtesy SolidWorks Inc.
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based on the status of the pixel (red if undercut, green

otherwise) and then multiply it by the lighting coefficient,

which is available from the color attribute of the fragment. We

found that faces nearly parallel to the parting direction can give

rise to self-shadowing artifacts, where some pixels are

mistakenly highlighted as undercuts due to floating point

errors. We minimize this problem by using techniques

proposed by Reeves et al. [39] and Williams [45] (see

Appendix A for details). The parts shown in Fig. 5 were

rendered with this process.
Fig. 6. Model of a mask rendered with the faces colored according to the angle

they make with the mold parting direction. Model courtesy SolidWorks, Inc.
3.3. Draft analysis

Although vertical part faces do not constitute undercuts,

they make it difficult to remove the part from its mold

(primarily due to shrinkage as the part cools). Thus during

detail design, ‘draft’ (a slight taper) should be applied to all

vertical walls to facilitate mold removal. The angle the

modified faces then make with the vertical, typically less

than 58, is called the draft angle. Draft analysis performed

today in software can be accomplished more efficiently using

vertex programs in hardware.

If the designer specifies a minimum acceptable draft angle,

we can use a simple vertex program to highlight facets with

insufficient draft. To highlight the facets with draft less than a

certain value, we set the mold parting direction and the sine of

the threshold draft angle value as constant data for the vertex

program. Within the program, we take the dot product of the

mold parting direction and the facet normal, and compare it to

the stored sine of the threshold draft angle, calculating a

rainbow color to apply to triangles with angle less than the

desired value. Let r be the ratio of the dot product and the sign

of the threshold draft angle. If r is greater than or equal to 1, we

color the triangle blue, which indicates that the triangle has a

sufficient draft. If r is less than 0.5, we compute the color as

follows:

colorZ ð1K2rÞREDC ð2rÞGREEN (1)

If r is greater than or equal to 0.5, we compute the color

using the following equation:

colorZ ð2K2rÞGREENC ð2rK1ÞBLUE (2)
Computing the color and applying it to all triangles reduced

the rendering speed from 5 to 50% depending on the geometry.

Fig. 6 shows a model of 410,798 triangles colored according to

the angle they make with the mold parting direction, which

rendered at 21.4 frames per second on a NVIDIA GeForceFX

6800 Go video card and Intel 1.6 GHz Pentium M CPU.

We can also find the minimum draft angle for the entire part

in one off-screen rendering pass using a vertex program. The

basic idea is to use a vertex program to calculate the sine of the

draft angle for each triangle, then render a dummy triangle

whose height is set equal to this calculated value instead of the

real triangle geometry. The lowest such triangle will be for the

smallest sine, corresponding to the minimum draft angle. To

implement this approach, when we render the object during this

pass, instead of the three actual vertex coordinates of every

triangle, we pass in the true triangle normal but dummy vertex

position values, (0,0,z), (1,0,z), (0,1,z), respectively. These

dummy vertices define a dummy triangle, initially identical for

all the facets of the part, which we set to be visible in a small

frame-buffer with orthographic projection. In our vertex

program, we again set the mold parting direction as constant

data, and then take a dot product between the normal of the

facet (stored with the vertex) and the mold parting direction,

thus calculating the cosine of the angle between the facet

normal and the mold parting direction, equivalent to the sine of



Fig. 7. The dot product of the normal and the mold parting direction (here,Cz)

is the sine of the draft angle q for a face.

Fig. 9. (a) Performance of minimum draft analysis algorithm on NVIDIA

GeForceFX 6800 Go GPU and Intel Pentium 1.6 GHz Mobile CPU.
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the draft angle (Fig. 7). For the output position value for the

dummy vertex, we change the z-coordinate to the sine value

calculated. Thus for every input triangle we render a triangle in

the frame-buffer with the z-value equal to the sine of the draft

angle (Fig. 8). We enable the depth test to GL_LESS and set

our eye-point on the negative z-axis looking towards the origin

with orthographic projection. At the end of the rendering pass

only the triangle corresponding to the smallest draft angle will

be visible. We then read back the z-value of just one pixel in the

interior of the triangle from the frame-buffer and calculate the

minimum draft angle, from the arcsine of that value. If we need

to identify the triangle that has the minimum draft angle, we

assign a unique color to each triangle and read the color back to

retrieve the triangle ID.

Fig. 9 shows a graph comparing running times of this GPU

algorithm for finding the minimum draft angle to a software

implementation. The overhead associated with the GPU

algorithm makes it slower for testing very small parts, but for

parts with more than a couple thousand facets, the GPU

algorithm is faster due to the software algorithm’s higher linear

growth rate.

During the conceptual design phase, we would also like to

provide feedback about potential undercut-free directions so

that the designer can choose the direction that is optimal.

Knowing the minimum draft angle for different mold parting

directions allows us to find the one that maximizes minimum

draft, for example. But we only want to compare directions that

are actually undercut-free.
Fig. 8. Dummy triangles rendered for every facet to find the minimum draft

angle.
4. Finding undercut-free directions

In this section we describe two algorithms that we have

developed and implemented to choose candidate directions to

test for 2-moldability. The key to making these algorithms

efficient is to identify groups of candidate directions such that if

any one direction in the group is not undercut-free, none are, or

if any one is undercut-free, all are.

Both our algorithms make use of a Gaussian sphere, a unit

sphere centered at the origin such that every point on it defines

a direction in Euclidean 3-space (a unit vector with its tail at the

origin and its head on the surface of the sphere). A planar facet

defines a great circle on a Gaussian sphere that is perpendicular

to the normal vector of the plane. This great circle divides the

sphere into two hemispherical regions where the corresponding

facet is either always an up-facet or always a down-facet with

respect to the set of directions contained in each hemisphere.

4.1. Quadtree algorithm

Our first algorithm runs primarily on the GPU. It is inspired

by the theoretical algorithm of Ahn et al. who prove that all

combinatorially distinct mold parting directions correspond to

0-, 1-, or 2-cells in an arrangement of great circles on a

Gaussian sphere [1]. Every facet normal and normal of the

triangle formed by every edge-vertex pair of the part generates

a great circle in their arrangement. These great circles

correspond to the directions where a part face changes from

front-facing to back-facing (directions contained in the plane of

the face), and directions where a projection of one part face

potentially changes from occluding to not occluding (or vice

versa) another part face (directions contained in the planes

through an edge-vertex pair from separate triangles).

We observe that there is no need to add the great circles

corresponding to face normals to the arrangement, since these

are actually a subset of the normals of the triangles defined by

edge-vertex pairs. We reduce the number of great circles

further by merging adjacent coplanar faces and omitting

redundant and non-interacting edge-vertex pairs (those where



Fig. 11. Sample part (left) with undercut-free directions indicated by the

(lighter) green dots on the Gaussian sphere (right). Directions with undercuts

are indicated by (darker) red dots (for interpretation of the reference to colour in

this legend, the reader is referred to the web version of this article).
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neither of the facets adjacent to the edge can be up-facets

simultaneously with any of the facets adjacent to the vertex

being up-facets).

We project the remaining great circles on a plane tangent to

the sphere to obtain an arrangement of lines. We subdivide the

line arrangement in a quadtree to obtain 32 lines per quadtree

leaf node (because our graphics card has 8 bits for each of the

four color channels and we allocate one bit per line; for

graphics cards with 32 bits per color channel we would use

32!4Z128 lines per quadtree leaf node). We then construct

the arrangement in each such leaf node by rendering a half-

space for each line with a different color, blending the colors by

using the GL_BLEND operation (equivalent to a bitwise-or).

Fig. 10 shows an arrangement in one quadtree leaf node. Thus

each of the up to 32(32C1)/2C1Z529 2-cells will be rendered

in a different color. We select a random sequence of 1024 pixel

locations in each leaf node, about twice the maximum possible

number of 2-cells, and keep the points having different colors

(corresponding to distinct 2-cells in the arrangement). While

this certainly does not guarantee that we will find a point in

each 2-cell, we found rapidly diminishing returns if we

increased the number of initial points tested; for example,

doubling the number of points typically only increased the

number of cells found by one or two. Since the implementation

is only approximate to begin with, we decided to forego the

additional overhead. If, while building the quadtree, a cell size

falls below a set tolerance limit (less than 1% of the size of the

cell we started with) before we have reduced the number of

lines (as will always happen if more than 32 lines go through

the same point) we stop subdividing and pick 1024 random

points in the cell. In either case, we test the directions

corresponding to the points, along with face normal and axis

directions (which are good heuristic candidates), for

2-moldability.

Fig. 11 shows a part, alongside the directions tested

displayed on the Gaussian sphere. Fig. 12 shows timing data

for this and additional parts we tested.
Fig. 10. Arrangement of lines in a quadtree leaf node (for interpretation of the

reference to colour in this legend, the reader is referred to the web version of

this article).
Note that in addition to the fact that we cannot guarantee

that we will test a direction in the interior of all the 2-cells, this

algorithm ignores the 1-cells and 0-cells, which in some cases

contain the only undercut-free directions. Furthermore, we

found that the speed of frame-buffer read-back was too slow to

be useful for practical application on parts with a large number

of facets.
4.2. Convex hull intersection algorithm

Our second, more accurate algorithm for finding if under-

cut-free parting directions exist makes use of convex hulls on

the Gaussian sphere. A spherical convex hull (C.H.) of a set of

points also on the sphere is a convex spherical polygon

bounded by great circular arcs [19]. The set of directions, in

which a planar facet A occludes another planar facet B is called

the inaccessibility region of B due to A; it can be calculated

exactly and represented as a spherical convex hull on the

Gaussian sphere [11]. The inaccessibility regions of A due to B

and B due to A lie diametrically opposite to each other on the

Gaussian sphere, with the corresponding convex hull vertices

projected through the origin.

Recall from Section 3 that an object is not undercut-free in a

given direction only if some pair of two up-facets overlap each

other when projected orthographically on a plane normal to

that direction. Thus only pairs of facets that can potentially

become up-facets simultaneously, with their projections also

overlapping (non-disjoint interiors) each other, could affect the

2-moldability of the object in any direction. We call such pairs

of facets ‘potentially interacting’ facets since they will interact

for some, but not all, potential directions. A facet divides space

into two half-spaces separated by the plane containing the

facet. We call the closed half-space on the side where the facet

normal points the positive half-space and the other closed half-

space the negative half-space.

A pair of potentially interacting facets will make the object

non-2-moldable in the directions lying in the inaccessibility

region of the facets due to each other. Taking this into

consideration, before calculating convex hulls to find inac-

cessibility regions of pairs of facets, we can first eliminate pairs

that we know can never interact. The following observation

allows us to identify all such pairs a priori.



Fig. 12. Performance data for quadtree algorithm on NVIDIA QuardroFX 3000 GPU and AMD Athlon 1.8 GHz CPU.

Fig. 13. (a) A pair of non-interacting triangles (b) Gaussian sphere with great

circles corresponding to the pair of triangles.
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Lemma. If and only if two facets A and B both lie entirely in

one of the half-spaces defined by the plane of the other, and

these half-spaces have the same sign, then those two facets

cannot interact. In particular if A lies in the positive

(alternately, negative) half-space of B and B lies in the

positive (alternately, negative) half-space of A, then A and B

cannot interact.

Proof. Consider two facets A and B, each of which lies entirely

in the negative half-space of the other (see Fig. 13). Let the

great circles on the Gaussian sphere perpendicular to the

normal vectors of A and B be called CA and CB, respectively.

Each great circle divides the sphere into two open hemispheres,

within each of which all directions make the corresponding

facet either an up-facet (the up-hemisphere of the facet) or a

down-facet (the down-hemisphere of the facet). The region

within which both the facets are up-facets is the intersection of

the up-hemispheres of A and B. Call this region R. We will

show that the projections of A and B along any direction in

region R cannot overlap.

Call the line of intersection of the two planes containing A

and B, respectively LAB. We will show that for projection

directions in the region R, the projection of LAB will always

separate the projections of A and B; thus they cannot overlap in

this region where they are both up-facets. We know LAB does

not overlap A, because A is entirely in the (closed) negative

half-space of B, and vice versa, so LAB overlaps neither facet.

Because LAB lies in the same plane as A, their projections can

never overlap except for projection directions parallel to this

plane, the directions on CA. Similarly the projections of LAB

and B cannot overlap except for projection directions on CB.

Thus for projection directions within the up-hemisphere of A,

the projection of A will always lie to the same side of the

projection of LAB; it will only cross over the projection of LAB

when we move from the up-hemisphere to the down-hemi-

sphere. Likewise for B. Thus, we need only confirm that for

some direction in region R the projections of A and B are on

opposite sides of the projection of LAB and it will hold true for

all directions within region R.
Now consider a vector v that is the average of the facet

normals of A and B, as shown in the figure. It is perpendicular

to LAB and can be placed on the plane that is the angle bisector

between the half planes of A and B, bounded by LAB, that

contain the respective facets. This vector lies in the region R on

the Gaussian sphere. The projections of A and B along this

vector lie on opposite sides of the projection of LAB, since the

projections of the respective containing half planes are on

opposite sides. Thus the projections of A and B will always be

on opposite sides of the projection of LAB for all projection

directions in region R, never overlapping in R, so they are not

potentially interacting. The case where two facets each lie in

the positive half-space of the other is analogous. ,
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If two facets do not lie entirely in the same-signed closed

half-spaces defined by the plane of the other, then one of them,

say facet A, must lie entirely or partially in the open positive

half-space of B, whereas B must lie entirely or partially in

the open negative half-space of A. If A 0 is the portion of A in the

open positive half-space of B, and B 0 is the portion of B in the

open negative half-space of A, then for any viewing direction

vector, call it v, formed by connecting a point in the interior of

A 0 to a point in the interior of B 0 corresponds to a non-undercut-

free parting direction, in which A 0 occludes B 0 at this interior

point (see Fig. 14). By construction, these two interior points

overlap when projected in direction v, so it only remains to

show that they are both up-facets. Since B 0 is in the negative

half-space of A, a direction vector leaving any point interior to

A and going to any point interior to B 0 will be pointing towards

the negative half-space of A, and therefore v’s dot product with

A’s outward facing surface normal is negative, the definition of

an up-facet. Similarly at the B 0 interior point, since the vector is

coming from a point in the positive half-space of B, it will have

a negative dot product with B’s outward facing surface normal

and thus B is also an up-facet for this viewing direction v. Thus

for any two facets that do not lie entirely in the same signed

half-space relative to each other, there are directions in which

they are both up-facets and occlude each other: they are

potentially interacting.

Note that for convex objects, which are equivalent to their

convex hulls, all the facets are in the negative half-space of all

other facets. Thus our test correctly determines that no pair of

its facets is potentially interacting; a convex object is

2-moldable in any direction.

Now imagine moving over the surface of the Gaussian

sphere, considering different mold parting directions. The only

event that changes the 2-moldability of our current direction is

when a pair of potentially interacting facets start or stop

occluding each other. Thus, the 2-moldability could change

only when the current direction crosses one of the arcs

bounding the accessibility regions of the potentially interacting

facets. These arcs divide the Gaussian sphere into connected

regions where the 2-moldability does not change in the interior

of any region. Furthermore, if the object is 2-moldable in the

directions interior to a region, then it is also 2-moldable in
Fig. 14. Two examples of facets A and B, which do not lie entirely in the same

signed half-spaces defined by the plane of the other.
directions on its boundaries, because arcs that form the

boundaries of the inaccessibility regions represent directions

where the corresponding projections of the two potentially

interacting facets just touch but have zero area overlap.

Similarly, if the object is 2-moldable in directions correspond-

ing to the interior points of the arc, it is also 2-moldable in the

directions corresponding to the arc ‘boundaries,’ namely the

two vertices of the arc segment. On the other hand, note that the

object may be 2-moldable in directions along an arc separating

two regions that are not themselves 2-moldable, and it may be

2-moldable in the directions corresponding to the vertices of an

arc whose other (interior) points don not correspond to

undercut-free directions. Thus to check whether there exists

any undercut-free direction for the object, it suffices to test the

2-moldability at the vertices of the connected regions. These

vertices will be either the convex hull vertices or the new

vertices introduced by the intersection of the original convex

hull arcs.

Unlike the previous algorithm, this algorithm is theoreti-

cally guaranteed to include an undercut-free direction in the set

of candidate directions if any undercut-free direction exists. Of

course, in practice, there will be round-off error unless it is

implemented using exact arithmetic.

This algorithm can be summarized as follows:

for every pair of triangles

if that pair is potentially interacting

calculate its inaccessibility region C.H.

store its bounding great circular arcs

endif

endfor

calculate intersections of all arcs

test 2-moldability of

1. C.H. vertices

2. intersections
4.2.1. Implementation

We have implemented the above algorithm in CCC on

Linux. For every pair of triangular facets in the file, we

determine if that pair is potentially interacting by checking

whether they are coplanar or in the same signed half-space

relative to each other as previously described. On average this

reduced the number of triangle pairs by about 75% in the parts

we tested (see Fig. 17, for which examples 71–90% of the

potentially interacting pairs were eliminated from further

testing). Unfortunately, the number of potentially intersecting

pairs is still O(n2), for a potential total of O(n4) intersections to

test, but since we are intersecting only segments, not whole

lines, it is unlikely we would see that many intersections in

practice.

If a pair of facets is potentially interacting, we next find the

inaccessibility region of the two facets. This region is a

spherical convex hull of points on the Gaussian sphere defined

by the set of nine vectors created from connecting each vertex

from one facet to each vertex in the other facet [11]. (In the

cases where the facets share a vertex, we drop the null vector



Fig. 16. Points of intersections of lines on the hemi-cube faces.

Fig. 15. (a) A pair of triangles (b) Points on the Gaussian sphere obtained from

the pair of triangles (c) Spherical convex hull obtained on the sphere (d)

Projecting the convex hull on a circumscribing cube (e) The convex hull

obtained on the faces of the cube after splitting.
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from further computation.) Again, we normalize the vectors

and place their tails at the origin in the center of a sphere. We

then project the vectors onto points on a plane placed tangent to

the sphere at the pole of a hemisphere containing the nine

vectors, so that their spherical convex hull projects with no

overlap. The vectors will always be co-hemispherical assuming

our original object boundary was not self-intersecting (see

Appendix B for the proof). In practice, we found that simply

calculating the average of the vectors was sufficient for

choosing a tangent plane orientation with an associated

hemisphere that contained all the vectors for all of the parts

we tested. On the projection plane, we calculate a standard 2D

convex hull, the vertices of which we project back to the sphere

and connect with great circular arcs with the same connectivity,

giving us the spherical convex hull.

We tried three different convex hull calculation approaches.

The first was the gift-wrapping convex hull algorithm as

described in [9]. Since we are always using sets of only nine

points, a simple, brute force approach like gift-wrapping would

seem adequate. However, for pairs of nearly coplanar facets,

the projections of the nine vectors from one facet’s vertices to

the other’s vertices will be nearly co-great-circular. Thus their

projections onto the plane will be nearly collinear. Gift-

wrapping, which works by comparing the signs of the cross

products of vectors between candidate convex hull points, can

become unstable when points are very close to collinear. (The

issue is with numerical imprecision that changes the sign of the

cross products, since the sign indicates which side of another

line a point is on. This qualitative error answering a sidedness

query can lead to mutually impossible results when calculating

the cross products with different subsets of the collinear points,

leading to an infinite loop or a self-intersecting convex hull.)

Given that the number of these cases was large in a significant

number of our test geometries, we next turned to exact

arithmetic.

We interfaced with two convex hull algorithm implemen-

tations from the Computational Geometry Algorithms Library

(CGAL) [3], Bykat’s non-recursive version of quickhull as

well as Akl and Toussaint’s convex hull algorithm. We used

the Cartesian kernel with the MP_Float (multi-precision float)

number type, which can represent floats with arbitrary

precision and uses exact arithmetic for numerical operations.

As expected, these implementations were much slower due to

the overhead of exact arithmetic, and we found to our surprise

that for several of the sets of nine input points we generated

they ran out of memory (using 1 GB of RAM and 2 GB of swap

space), again due to sets of nearly collinear points.

We had the best luck when we implemented Graham’s scan

algorithm as described in [33] to calculate the convex hull. It

sorts the input points by angle from a pivot, deleting from the

list those points with equal angle but smaller radius from the

pivot than another point in the set, and builds the hull based on

the final sorted list. Graham’s scan is therefore well suited to

handle data sets with collinear input points, because small

quantitative round-off errors calculating the angles will only

cause small quantitative errors in the results, not mutually

impossible answers to sidedness queries.



Fig. 17. Running times for our Convex Hull Intersection Algorithm to find an un-dercut-free direction (NVIDIA QuadroFX 3000 GPU and AMD Athlon 1.8 GHz

CPU).
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We verified that from every pair of triangles we get two

diametrically opposite inaccessibility regions. Thus, when all

the convex hulls are added on the sphere, the arrangement

obtained is symmetric about the center. Thus, for further

computation it is sufficient to consider the portions of the arc

segments that are in any one hemisphere.

Again, it is simpler to calculate great-circular arc

intersections if we project them to a plane, where this time

the problem maps to an intersection of straight line segments.

To avoid points projecting to infinity and to make more

uniform use of the floating point precision, we actually project

onto a circumscribing, axis-aligned hemi-cube, specifically, the

cube faces corresponding to the xZ1, yZ1 and zZ1 planes.

We project each convex hull to these hemi-cube faces, splitting

segments across the faces if they project to more than one, and

clipping at the boundaries. Thus for every face we obtain a set

of straight line segments. Fig. 15 shows this process for a pair

of triangles.

We first check the vertices of these lines to see if they

represent undercut-free directions. If none of the vertices are

2-moldable, then we find the intersections of the lines and

check those intersections for 2-moldability (Fig. 16). If we are

only interested in finding whether the object is 2-moldable, we

can stop after we find an undercut-free direction, otherwise we

can continue until all the line vertices and their intersections

are checked. Again, we initially tried CGAL for calculating the

intersections, but found that we ran out of memory for more

complex inputs (presumably the large number of overlapping
and collinear-up-to-our-limited-numerical-precision arc seg-

ments were the problem), so we reverted to faster floating point

arithmetic intersection calculations.

Details of running times to find an undercut-free direction

for different parts without checking heuristic directions first are

given in Fig. 17. The convex hull calculations for the more

complex parts take from seconds to minutes; 2-moldability

testing time depends on how many directions we actually end

up checking before finding one that is feasible. The final part in

the table was the most challenging with only one undercut-free

direction, which our algorithm only found after about fifteen

minutes of processing.
5. Future work

Our original proof-of-concept implementation of the convex

hull intersection algorithm could be further optimized.

Currently we test all the vertices we generate, even those that

lie in the interior of an inaccessibility region of another pair of

facets. Because the inaccessibility regions are regions of non-2-

moldability, such vertices will always be non-2-moldable. The

question is whether the time it takes to identify that a vertex is

interior to another convex hull is less than the time we can save

by not checking the 2-moldability of such vertices. A

promising approach could be to find the (non-regularized)

union of the interiors of the non-2-moldable regions and only

test vertices of this union. An alternate approach to reduce the

running time for geometries that are approximations to curved
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surfaces would be to look at the original control polygon

geometry.

Another area of interest for future work is multi-piece molds

with cores and inserts. Our algorithm for checking for

2-moldability can be easily extended to consider additional

removal directions for side pulls if the designer specifies the

directions. If no removal direction guidance is given, the

problem of finding a mold design that is guaranteed to

minimize the number of mold pieces appears to be NP-hard

[36]. But we believe that GPU-based algorithms can be used

with heuristic approaches to facilitate the design of parts to be

manufactured in multi-piece molds as well. For example, GPU

algorithms could be developed to calculate the decision criteria

discussed in [38] in order to assist designers in choosing a

(primary) parting direction.

6. Conclusion

This paper presents two algorithms that use an efficient new

GPU undercut detection algorithm as a subroutine for detecting

if any undercut-free parting directions exist for a faceted part

geometry. We introduce a new criteria for identifying which

pairs of facets are potentially interacting that we prove

eliminates all pairs of facets that can never occlude each

other. This optimization typically removes 70–90% of facet

pairs from further processing, although unfortunately it does

not reduce the worst-case theoretical complexity. For a

predetermined parting direction, by exploiting the capabilities

of programmable graphics hardware, we are able to achieve

sub-millisecond undercut detection and real-time undercut

highlighting and draft analysis.
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Appendix A

We use two techniques to minimize artifacts generated

during highlighting undercuts. The first technique addresses

errors that arise due to a sampling mismatch between the

viewpoints. While carrying out the depth test between a pixel’s

interpolated depth value and its corresponding depth texture

value, we also check the four adjacent texels in the depth

textures and compare their depth values to the depth value of

the pixel. If any of the depth comparison passes, then we set the

pixel as 2-moldable. First proposed by [39], this process of

simultaneously testing the adjoining texel is now implemented

in hardware and can be accessed via the GL_ARB_shadow

OpenGL extension. The second technique uses polygon

offsetting, first introduced by [45] and now available in

OpenGL, which offsets the z value of every pixel before it is

written in the z-buffer. The offset amount is calculated as

factor!DZCr!units where factor and units are user-defined.

DZ is the maximum depth slope (change in z) of the polygon
within that pixel and r is the smallest resolvable z-buffer

resolution. We refer the reader to the OpenGL Programming

Guide for further details about polygon offsets [42]. While

rendering the scene to the depth texture from the Cz and -z

directions, we enable polygon offsetting to displace the

surfaces away from the viewpoint. This reduces artifacts due

to limited floating point precision and the texture resolution.

We found that using either the standard values of factorZ1 and

unitsZ1 or the more aggressive values of factorZ1.1 and

unitsZ4 recommended by Mark Kilgard of NVIDIA [27]

worked well on NVIDIA cards.

Appendix B

Theorem. For any two triangles in a non-self-intersecting

triangulated boundary representation of a 2-manifold part, the

nine vectors joining the vertices of one triangle to the vertices

of the other correspond to nine co-hemispherical points on the

Gaussian sphere.

Proof. We will prove this theorem by proving that for a pair of

such triangles, there always exists a separating plane such that

the interiors of the triangles lie on opposite sides of the plane.

(If the two triangles share an edge, then the edge lies on the

separating plane and the interiors lie on the opposite sides of

the plane.) Once we prove that there exists such a separating

plane, we will show that the vectors joining vertices of one

triangle to those of the other will all be in one closed

hemisphere of the Gaussian sphere defined by this separating

plane. ,

Lemma. For any two triangles whose interiors are disjoint,

there exists a separating plane such that the triangle interiors

lie on the opposite side of the plane.

Proof. The above lemma is an extension of the separating axis

theorem, which states that there exists a separating plane for

any two triangles that are completely disjoint. Our proof

follows the same outline as the proof of the separating axis

theorem as provided in [21].

First, we will review a few properties from computational

geometry that we will use in the proof. A Gauss map of a

convex polytope is a partition of the Gaussian sphere according

to the rule: a point v on the sphere is associated with the

polytope feature extremal in direction v. A feature is extremal

in direction v if it is at least as far in direction v as any other part

of the polytope. For a convex polytope, vertices map to convex

regions on the Gauss map; edges map to great circles where the

great circles represent directions normal to the edges; and each

face maps to exactly one point on the Gauss map, which is the

direction of its normal.

For two triangles A and B (not necessarily coplanar), let ða
and ðb be position vectors (vectors from the origin to the point)

of any points belonging to triangles A and B, respectively. The

Minkowski difference P of A and B can be defined

PZ fðpjðpZ ðaKðb s:t: ða2A and b2Bg. If A and B intersect

each other, there will be at least one point that is common to

both the triangles. The point belonging to the Minkowski

difference corresponding to the common point will lie at the



Fig. A1. The projections of two triangles sharing an edge, projected axially on a

separating axis, will just touch each other.
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origin. Thus if the two triangles intersect, the Minkowski

difference must contain the origin and vice versa: if

the Minkowski difference contains the origin, then there must

be a point that is common to both the triangles and thus the two

triangles must intersect. Furthermore, if the two triangles do

not intersect, the minimum distance between them can be given

by minðjðaKðbjÞ, where ða2A; ðb2B. But this is nothing but

minðjðpjÞ where ðp2P. Thus the minimum distance between

two non-intersecting triangles is given by the minimum

distance between the origin and their Minkowski difference.

The Gauss map G(A) of triangle A consists of three great

circles (one for each edge) that intersect at two antipodal

points. The common points denote the direction normal to the

triangle. Likewise we can find the Gauss map G(B) of triangle

B. The superposition of these two maps covers all the pairwise

features of A and B, respectively, which give rise to the

boundary features of the Minkowski difference [16,21]. Thus

the Gauss map G(P) of their Minkowski difference P is the

superposition of G(A) and G(B). The superposition consists of

six great circles, three for each triangle. Assuming that the

great circles are in general position, each great circle of triangle

A will intersect each great circle of triangle B at two antipodal

points, for a total of 9 interacting pairs. Each pair yields two

antipodal intersection points, for a total of 18 intersection

points. Taken together with the two antipodal points from both

G(A) and G(B), in all there are 22 intersection points in the

superposition. These intersection points represent directions

that are either (1) normal to the plane of one of the triangles or

(2) normal to a pair of edges such that one edge is from triangle

A and the other is from triangle B. Points of the first type arise

from the intersection of three great circles from the same

triangle. Points of the second type arise from the intersection of

two circles from different triangles. Thus, the planes normal to

these directions are either parallel to the plane of a triangle or

parallel to a pair of edges.

These planes correspond to the faces of the Minkowski

difference of triangles A and B. Faces of the Minkowski

difference are formed in two ways. The first case is when

triangle A is translated by subtracting a vertex of triangle B

from it (or vice versa). This face will be parallel to triangle A,

(respectively B) and its Gauss map is the same as G(A),

(respectively G(B)), yielding the points obtained in case (1)

above. The second type of face is formed when an edge of

triangle A is translated by subtracting every point on an edge of

triangle B (or vice-versa). The face thus formed will be parallel

to both the edges and its Gauss map will be the antipodal points

obtained by the intersection of the great circles defined by the

edges, yielding the points obtained in case (2) above. Thus the

intersection points in the superposition of G(A) and G(B) also

represent the faces of the Minkowski difference P. Since the

points come in antipodal pairs, each face of P has a face

parallel to it. Thus P is formed by the intersection of 11 slabs

bounded by parallel planes (or fewer slabs if the great circles

were not in general position).

Recall that the Minkowski difference P contains the origin if

and only if A and B intersect each other and that the minimum
distance between two disjoint convex polytopes is equal to the

minimum distance of P from the origin to their Minkowski

difference. If the two polytopes penetrate each other, then the

depth of penetration is equal to the minimum distance between

the origin and the boundary of the Minkowski difference [28].

In the case of our input polytopes A and B, however, they do not

penetrate by definition because they are from a non-self-

intersecting mesh. Thus if A and B touch each other at the

boundary, then the origin will lie on the boundary of P since the

penetration depth, as well as the minimum distance between

them, is zero.

Thus the question of whether two triangles intersect each

other reduces to checking whether the origin lies inside the

slabs that form P. Each slab, which is bounded by two parallel

planes, defines an axis normal to it. The axial projection of a

point p onto an axis is the point of intersection of the axis and

the line perpendicular to the axis that passes through the point

p. A given slab contains the origin if and only if the axial

projections of the triangles onto a normal defined by that slab

overlap. In addition, the distance from the origin to the slab

equals the length of the gap/overlap between the images of A

and B under axial projection onto the axis [21] (Fig. A1).

If the origin lies on the boundary of P, the boundary of at

least one slab will pass through the origin. Thus there would be

at least one separating axis where the projections of the

interiors of the two triangles onto that axis just touch each

other, i.e. both the gap and the overlap between them is zero. If

the two triangles are completely disjoint, then there will be at

least one separating axis where the projections are disjoint.

If the projections are disjoint, then a plane normal to the

separating axis that is placed such that it intersects the axis at a

point lying inside the gap between the two projections is a

separating plane. If the projections just touch each other, then a

plane that intersects the axis at the point where both the axial

projections meet will separate the interiors of the two triangles

and pass through the points on the boundary that are common

to both the triangles.

For the case of completely disjoint triangles, the nine

vectors from the vertices of triangle A to the vertices of triangle

B cross from the open half-space induced by the separating

plane that contains A to the open half-space that contains B, as



Fig. A2. Vectors joining vertices of one triangle to the vertices of the other

triangle cross the separating plane. These vectors, when mapped onto the

Gaussian sphere, lie in one of the two hemispheres defined by the separating

plane. Only three of the nine vectors are shown to avoid clutter.
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shown in Fig. A2. The separating plane defines a great circle on

the Gaussian sphere (‘equatorial’ relative to the ‘pole’ to which

its normal maps) that divides it into two hemispheres. The nine

vectors will all map to points on the Gaussian sphere in the

open hemisphere corresponding to the half-space containing B.

In the case where only the triangle interiors are disjoint, the

vectors will cross from the closed half-space containing A to

the closed half-space containing B. Thus the vectors will either

map to points in the open hemisphere containing B, points on

the great circle defining the hemisphere (for vectors defined by

non-coincident points both on the separating plane), or to null

vectors (for vectors defined by coincident points) that are

dropped from further calculations. Thus all the vectors map to

points that are in one closed hemisphere of the Gaussian

sphere. ,
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