
Accurate Moment Computation Using the GPU

Adarsh Krishnamurthy∗, Sara McMains
University of California, Berkeley

Berkeley, CA, USA

ABSTRACT
We present algorithms for computing accurate moments of solid
models that are represented using multiple trimmed NURBS sur-
faces. Our algorithms make use of programmable Graphics Pro-
cessing Units (GPUs) to accelerate the computations. We evalu-
ate the surface coordinates and normals accurately, with theoretical
bounds, using our GPU NURBS evaluator. We have developed a
framework that makes use of this data to evaluate surface integrals
of trimmed NURBS surfaces in real time. With our framework, we
can compute volume and moments of solid models with theoretical
guarantees. The framework also supports local geometry changes,
which is useful for providing interactive feedback to the designer
while the solid model is being designed. We can compute the cen-
ter of mass and check for stability of the solid model interactively.
Applications of such real-time moment computation include defor-
mation modeling, animation, and physically based simulations.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Hardware ArchitectureGraphics Pro-
cessors;; I.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingGeometric Algorithms, Languages, and Sys-
tems; G.1.4 [Numerical Analysis]: Quadrature and Numerical Dif-
ferentiationGaussian Quadrature

Keywords
Geometric Algorithms, Moments, Volume, NURBS, GPU, Hybrid
CPU/GPU Algorithms

1. INTRODUCTION
Geometric moments of solid bodies are intrinsic properties of

their underlying shape that can provide important design cues to
aid in Computer-aided Design (CAD). Computing moments is also
essential for physically based simulations that help in improving
realism in animations. In addition, many Computer-Aided Manu-
facturing (CAM) analyses depend on computing accurate volume,
center of mass, and moments of inertia. For example, a part that is
fixtured using its center of mass will prevent any unbalanced loads
∗e-mail:{adarsh|mcmains}@me.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2010 ACM Symposium of Solid and Physical Modeling (SPM ’10), Haifa,
Israel
Copyright 2010 ACM 978-1-60558-984-8/10/09 ...$10.00.

on the fixturing system. The moments of inertia can be used to
compute the loads that might be transferred to the fixturing sys-
tem. Although designers have an intuitive sense of the location
of the center of mass and principle moments of inertia, accurate
feedback about these properties can be a valuable asset while de-
signing. The zeroth-order moment measures the volume enclosed
by the solid body. Computing accurate volumes is essential since it
helps the designer estimate the amount of raw material that might
be required to manufacture a particular part. This is essential espe-
cially in the case of molding, where the volume computation is es-
sential to maintain quality while manufacturing. If a mold is filled
incompletely, it leads to voids in the final part; conversely, filling a
mold with excess material leads to flash that needs to be trimmed
later. Thus, accurate interactive feedback about moments can aid
the designers in spotting any inconsistencies and make corrections
early in the design process, keeping costs low.

Computing accurate moments of modern CAD models interac-
tively is not straightforward due to the presence of curved freeform
surfaces. Trimmed Non-Uniform Rational B-Spline (NURBS) sur-
faces are the de facto representation for curved surfaces in modern
CAD systems. Moments of objects made of such freeform surfaces
are currently being computed by commercial solid modeling soft-
ware by first evaluating and tessellating the surfaces and then com-
puting the moments of the tessellated object by projecting them to
a common plane that passes through the middle of the object [28].
This approach, in addition to being extremely slow and computa-
tionally intensive, is dependent on the tessellation resolution for the
accuracy of the solution; the surface has to be very finely tessellated
to get the required accuracy. Recent advances in programmable
GPUs provide an alternative to accelerate the computations. We
have developed a GPU-accelerated algorithm to compute moments
of solid objects made of trimmed NURBS surfaces in real time.
These algorithms exploit the parallelism of the GPU to provide im-
mediate visual feedback to the designer. The algorithm updates the
moment values interactively while the designer changes the design
of the part.

In our method, we calculate moments by first converting the vol-
ume integrals for moments to surface integrals using the divergence
theorem. We then use the GPU to compute these surface integrals.
Thus, our algorithm is not restricted to computing moments but can
be used to compute general case surface integrals of NURBS sur-
faces. Computing surface integrals of free-form surfaces form an
important part of several physical simulation algorithms, includ-
ing finite element analysis. In such cases, our algorithm provides a
framework to compute surface integrals of NURBS surfaces rapidly
and accurately. We have developed different GPU-based numerical
integration techniques that can be used to evaluate surface integrals
of NURBS.

81

(a) Race Car (b) V8 Engine (c) Engine (d) Freeform

(e) Trefoil (f) Hammer (g) Scooby (h) Quarter Cylinder (i) Slanted Cylinder Block

Figure 1: Computing the volume and center of mass of complex objects made of multiple trimmed-NURBS surfaces. The center of
mass is marked with a green dot; the objects are rendered partially transparent.

In this paper, we provide a hybrid CPU/GPU algorithm that can
be used to compute moments. Our main contributions include:
• A GPU accelerated moment computation algorithm that can

be used to calculate the volume, center of mass, moment of
inertia, etc. of solid models that are represented using mul-
tiple trimmed NURBS surfaces. Our computations are inde-
pendent of the tessellation of the solid models. They allow
for interactive updates of moments while the model is being
edited.
• A GPU algorithm for performing numerical surface integra-

tion on trimmed NURBS surfaces for moment computations.
We provide details of using the GPU to perform midpoint, 2-
point Gaussian quadrature, or 3-point Gaussian quadrature
integration schemes. We compare the accuracy of our algo-
rithm to theoretical results.
• Error estimates for our moment computations. They allow

for user-defined tolerance values that are essential for inte-
grating our algorithms in a CAD system.

2. RELATED AND PREVIOUS WORK
Volume and geometric moment computations have been funda-

mental to many geometric applications and the literature covering
them is vast. We provide a brief summary of some key papers that
are close to our work in Section 2.1. We then provide a brief sum-
mary of our previous GPU NURBS contributions in Section 2.2.
We make use of some of the concepts that we outline in this section
in our current work.

2.1 Related Work
Properties such as volume, moment of inertia, etc. can be clas-

sified as integral properties that are defined by triple (volumetric)
integrals over subsets of three-dimensional Euclidean space. Initial
work on computing volume of curved objects by approximating
them with polyhedral facets was performed by Messner et al. [21].
However, the errors introduced due to the approximation were not
analyzed. Lee and Requicha published a two-part paper that dis-
cussed the methods that were known up to that time for computing
the integral properties of solids. In their first paper [19], they sum-

marize the methods for computing volume and moments of solid
bodies represented using Boundary Representation (B-rep), primi-
tive instancing, etc. In their subsequent paper [20], they focus on
Constructive Solid Geometry (CSG) and propose a new algorithm
based on cellular approximation using octrees. They also predict
the accuracy of their algorithm in approximating the integral prop-
erties.

Boundary Representations (b-reps) are the de facto standard for
representation of solid models in current CAD systems. Lee and
Requicha classified the different algorithms for computing geomet-
ric moments of b-reps as either direct integration methods or diver-
gence theorem methods. For polyhedral models, direct integration
methods can be easily applied since the integration is performed
over planes. Cattani and Paoluzzi [3] developed a finite integra-
tion method for the computation of various-order monomial inte-
grals over polyhedral solids and surfaces. This method can be used
for exact evaluation of inertial properties of homogeneous polyhe-
dral objects. Mirtich [22] developed a fast algorithm to compute
moments of polyhedral objects by successively applying the diver-
gence theorem. Timmer and Stern [29] developed a computational
scheme that operates directly on parametric bi-cubic spline patches
to compute the inertial properties of solids. Their method relied
on computing the intersection curves of adjacent surfaces of the
solid accurately to compute the integral properties. For interac-
tive applications, Ochoa et al. [5] developed a method to compute
moments of piecewise polynomial surfaces that is based on the di-
vergence theorem. They outline several applications in animation
where the models can be solved to match the moments. However,
their method relies on modeling the objects using a particular type
of cubic spline surfaces known as C1-surface splines to maintain
interactivity. For graphical animation applications that use subdivi-
sion surfaces, Peters and Nasri [23] developed a method to compute
the volume of a solid enclosed by subdivision surfaces by estimat-
ing the volume of the local convex hull near extraordinary points.
Soldea et al. [27] developed an analytical method for computing
moments of free-form objects that use either parametric surfaces or
a constant set of trivariate functions as boundary. In their method,
they compute integrals of b-spline blending functions to compute
the moments of free-form objects.

82

GPU geometric algorithms are currently gaining popularity due
to the performance gains achievable by using GPUs. However, al-
gorithms to compute geometric moments were limited to volume
computations since many of them calculated the volume by render-
ing to the screen. Kim et al. [11] use the depth buffer while ren-
dering to the screen to compute the volume of general shapes and
use it for buoyancy simulation. Khardekar et al. [10, 9] have devel-
oped a GPU algorithm to compute the undercut volumes in molds
that can then be used to choose an optimal parting direction while
using multi-part molds. GPUs were also used for solving standard
geometric problems such as surface-surface intersections [2] and
collision detection [6, 12, 14, 7]. However, there has been lim-
ited use of GPUs to compute integral properties for 3-dimensional
solid bodies since algorithms that render to the screen are limited
to image-space precision.

One of the advantages of developing a GPU algorithm that uses
the divergence theorem is that the integration method can also be
used for the evaluation of surface integrals of polynomial forms.
These forms commonly arise in physical simulations that use Fi-
nite Element Analysis (FEA). Scalar valued functionals, such as
energy functionals, are usually evaluated as surface integrals; they
can be used to measure the quality of surfaces [13]. Recently, re-
searchers at the University of Wisconsin have developed a method
of analyzing 3-D beams by performing surface integration over the
boundary of the beam [26, 8].

On analyzing the related work in the field, we find that even
though numerous methods for computing moments and surface in-
tegrals exist, there has been only limited analysis on the accuracy
of the computations. In addition, there has been limited work on
parallelizing the computations to improve their performance. We
will try to address both these issues in this paper.

2.2 Previous Work
Our moment computation algorithms build on our previous pa-

pers on GPU NURBS evaluation and modeling. We present a short
outline of our GPU algorithms that were explained in detail in
[15, 17]. In our NURBS evaluation paper, we developed a method
to evaluate a mesh of points on a NURBS surface directly using
the GPU. Our algorithm used a fragment program to evaluate a
NURBS surface of arbitrary degree in several passes. After eval-
uation we have samples on the NURBS surface as 4-component
vectors—(x, y, z, w) coordinates—in space stored as a texture on
the GPU. While rendering, we interpret these values stored in the
texture as vertex coordinates using a Vertex Buffer Object (VBO)
and display the mesh directly on the screen. However, this previ-
ous work used uniform parametric grid spacing in our evaluations
for display and modeling operations; in this paper, we adapt this to
perform evaluations with non-uniform grid spacing.

Using the NURBS evaluator, we were able to build a GPU frame-
work to perform geometric operations such as surface-surface inter-
sections, sketching [16, 17], silhouette curve evaluation, and mini-
mum distance computations [18]. These geometric algorithms were
still based on uniform parametric evaluation of NURBS surfaces
and made use of surface Axis-Aligned Bounding-Boxes (AABBs)
to accelerate the computations.

In our NURBS modeling work, in order to bound the errors,
we find the maximum possible deviation K of a curved surface
from the linearized approximation. The analytical expression for
the deviation based on the surface curvature is given by Filip et
al. [4]. They show that if a parametric C2 surface is evaluated at
(n+ 1)× (m+ 1) grid of points, the deviation of the surface from
the piecewise linear approximation cannot exceed the constant K
defined by Equations (1) – (4).

A1

A3

A2

Curved Surface

Linear Approximation

Maximum Deviation

Figure 2: The maximum possible deviation of the actual surface
from a linear approximation is K. In this case, the surface is
bounded by two parallel triangles that are at a distance K from
the linear approximation.

K1 = max
∀(u,v)

[
max

(∣∣∣∣∂2x

∂u2

∣∣∣∣ , ∣∣∣∣∂2y

∂u2

∣∣∣∣ , ∣∣∣∣ ∂2z

∂u2

∣∣∣∣)] (1)

K2 = max
∀(u,v)

[
max

(∣∣∣∣ ∂2x

∂u∂v

∣∣∣∣ , ∣∣∣∣ ∂2y

∂u∂v

∣∣∣∣ , ∣∣∣∣ ∂2z

∂u∂v

∣∣∣∣)] (2)

K3 = max
∀(u,v)

[
max

(∣∣∣∣∂2x

∂v2

∣∣∣∣ , ∣∣∣∣∂2y

∂v2

∣∣∣∣ , ∣∣∣∣∂2z

∂v2

∣∣∣∣)] (3)

K =
1

8

(
1

n2
K1 +

2

nm
K2 +

1

m2
K3

)
(4)

Given any three nearby points evaluated on the surface using the
uniform grid of size n×m, we can approximate the surface linearly
using the triangle formed using these points (Figure 2). We can
also bound the coordinates of the curved surface with two parallel
triangles that are at a distance K from the linear approximation,
since the maximum possible deviation of the surface is K.

3. MATHEMATICAL FORMULATION
In this section, we briefly explain the mathematical formulations

required for moment computations; for a more detailed explanation
please refer to [25]. We make use of Gauss’s divergence theorem
to convert volume integrals to an integral over the boundary surface
of the volume. The divergence theorem is a special case of the gen-
eralized n-dimensional Stokes’ theorem that is restricted to three
dimensions.

THEOREM 1. (Divergence Theorem) Given a vector field f de-
fined over a closed bounded region, V ⊂ <3, whose boundary is
a piecewise smooth orientable surface S, the volume integral of the
divergence of f over V equals the surface integral of the normal
component of f over S.

∇ · f =
∑ ∂fi

∂xi
(5)

∫
V

∇ · f dV =

∫
S

f · n̂ dS (6)

Equations (6) formalizes the statement of the divergence theo-
rem. However, as noted by the theorem statement, the theorem is
applicable only if both the vector field f and the region V satisfy

83

some basic conditions. The vector field must be continuous and
have continuous first partial derivatives in the region containing
V . In addition, V itself should be closed and its boundary sur-
faces must be orientable and piecewise continuous. The piecewise
continuous surface condition expands the applicability of the the-
orem to many practical 3-dimensional objects, since it overcomes
the limitation of having undefined normals at sharp edges of ob-
jects. The divergence theorem is applicable to any 3-dimensional
object as long as it is 2-manifold. Using the divergence theorem,
we can convert volume integrals, which are difficult to evaluate for
complex solid objects made of multiple trimmed NURBS surfaces,
to surface integrals that can be easily evaluated over the NURBS
surfaces.

The evaluations of surface integrals require the calculation of sur-
face normals. We will briefly present the equations for evaluat-
ing NURBS derivatives and normals in Section 3.1; please refer
to [24, 17] for more details.

3.1 Evaluation of NURBS Normals
Recall that the parameterized NURBS surface can be represented

as a 3-component vector (Equation (7)) which is evaluated as the
4-component vector shown in Equations (8). The Np

i s and Nq
j s

are the B-spline basis functions of degree p and q respectively;
(xij , yij , zij , wij)s are the NURBS control points defined as a quad
mesh.

S(u, v) =
X

w
,X =

 x
y
z

 (7)

x

y

z

w

=

∑n
i=0

∑m
j=0 N

p
i (u)Nq

j (v)xij∑n
i=0

∑m
j=0 N

p
i (u)Nq

j (v)yij∑n
i=0

∑m
j=0 N

p
i (u)Nq

j (v)zij∑n
i=0

∑m
j=0 N

p
i (u)Nq

j (v)wij

(8)

Given a NURBS surface, we can evaluate the partial derivatives
and normals; Equation (9) gives the partial u-derivative for the
NURBS surface that is evaluated from the derivatives of the basis
function of degree p with respect to u, represented as Np

i,u(u). The
partial derivative of the surface with respect to v can also be eval-
uated in a similar manner. In this work, we assume all the weights
(w) are positive and hence no poles can occur in S or its partial
derivatives. Finally, the normal to the surface is evaluated as the
cross-product of the u and v partial dervatives (Equation (11)).

S,u(u, v) =
X,uw −Xw,u

w2
(9)

x,u

y,u

z,u

w,u

=

∑n
i=0

∑m
j=0 N

p
i,u(u)Nq

j (v)xij∑n
i=0

∑m
j=0 N

p
i,u(u)Nq

j (v)yij∑n
i=0

∑m
j=0 N

p
i,u(u)Nq

j (v)zij∑n
i=0

∑m
j=0 N

p
i,u(u)Nq

j (v)wij

(10)

n(u, v) = S,u(u, v)× S,v(u, v) (11)

3.2 Surface Integrals of Parametric Surfaces
Surface integrals of parametric surfaces are straightforward to

compute due to the presence of an underlying 2-dimensional pa-
rameterization. We can convert the surface integrals to integrals
over the parametric domain by changing the variables. In Equa-
tion (12), P represents the parametric (u, v) domain and J is the
Jacobian for the transformation. It can be shown that the Jacobian
can be computed to be numerically equal to the length of the nor-
mal of the parametric surface (Equation (13)).

∫
S

dS =

∫
P

|J | dP (12)

|J | = |n| (13)

The volume integrals simplify with the application of the diver-
gence theorem as given by Equation (14). In particular, for NURBS
surfaces, the parametric domain is a square domain with the (u, v)
range [0, 1]× [0, 1] and dP can be replaced with the product du dv.

∫
V

∇ · f dV =

∫
S

f · n̂ dS

=

∫
P

f · n̂ |n| dP

=

∫
P

f · n dP

=

∫
P

f · n du dv

(14)

3.3 Moments of Solid Bodies
By choosing appropriate vector functions for f , we can compute

the moments of solid bodies with uniform densities. By applying
the divergence theorem to the solid body, we can compute the mo-
ments by computing the contribution of each surface and sum the
results. In Equation (15), Pi represents the parametric surfaces that
make up the solid body.

∫
V

∇ · f dV =
∑
i

∫
Pi

f · n du dv (15)

By setting ∇ · f = 1, we get the zeroth-order moment, M0,
the volume of the solid body. However, there are many different
choices for f that satisfy this condition. One option is to choose f
as shown in Equation (16).

M0 =
∑
i

∫
Pi

 0
0
z

 · n du dv =
∑
i

∫
Pi

z nz du dv (16)

The first-order moments, defined by Equations (17)–(20), can
also be computed by carefully choosing f . For example, in order to
compute the first-order moment Mx, we need to set∇·f = x. Sim-
ilar to the volume computation case, there are several choices for f
that satisfy this requirement; we choose the x and y components to
be both 0, and the function xz for the z component. The other first-
order moments can be computed in a similar manner. The center
of mass CM of the object is computed by dividing the first-order
moments by the volume of the object (Equation (21)).

84

M1 =

 Mx

My

Mz

 =

∫
V
x dV∫

V
y dV∫

V
z dV

 (17)

Mx =
∑
i

∫
Pi

x z nz du dv (18)

My =
∑
i

∫
Pi

y z nz du dv (19)

Mz =
∑
i

∫
Pi

(
z2

2

)
nz du dv (20)

Cm =

 Cx

Cy

Cz

 =

 Mx/M0

My/M0

Mz/M0

 (21)

The second-order moments form the components of the inertia
tensor, I , given by Equation (22). The components of the inertia
tensor can be computed using Equations (23)–(28).

I =

Myy + Mzz −Mxy −Mxz

−Mxy Mxx + Mzz −Myz

−Mxz −Myz Mxx + Myy

=

∫
V

(y2 + z2) dV −
∫
V
xy dV −

∫
V
xz dV

−
∫
V
xy dV

∫
V

(x2 + z2) dV −
∫
V
yz dV

−
∫
V
xz dV −

∫
V
yz dV

∫
V

(x2 + y2) dV

(22)

Mxx =
∑
i

∫
Pi

x2 z nz du dv (23)

Myy =
∑
i

∫
Pi

y2 z nz du dv (24)

Mzz =
∑
i

∫
Pi

(
z3

3

)
nz du dv (25)

Mxy =
∑
i

∫
Pi

x y z nz du dv (26)

Myz =
∑
i

∫
Pi

y

(
z2

2

)
nz du dv (27)

Mxz =
∑
i

∫
Pi

x

(
z2

2

)
nz du dv (28)

4. MOMENT COMPUTATION
We first give a broad overview of our algorithm that makes use

of the theoretical formulation explained in Section 3. Given a solid
object that is made of multiple trimmed NURBS surfaces, we com-
pute the total moment by summing the moment contribution from
each surface. If the surface is a flat plane, we directly compute its
moment contribution by using the triangulation of the plane. If it is
a NURBS or a trimmed NURBS surface, we compute its moment
contribution by performing surface integration using our GPU algo-
rithm. It must be noted that the object must be 2-manifold for the
computed moments to be valid. However, the main advantage of
computing the moments from surface integrals is that the algorithm
is robust in handling the small gaps between trimmed surfaces that
exist in a tolerant solid model, since we do not evaluate points on
the edges. Tolerant solid modeling provides a method for handling
these small gaps; any two points that lie within a user-defined tol-
erance is taken to represent the same point. This is essential to cre-
ate a watertight object when the model has many trimmed-NURBS
surfaces that vary in parameterization along their common edges.

In our algorithm, we divide each NURBS surface into sub-patches
equal to the number of knot-intervals in each parametric direction;
we call this the base number of sub-patches. Based on the number
of sub-patches and the type of integration scheme used, we create
a vector of u and v parametric positions where we want to evaluate
the surface. If it is a trimmed NURBS surface, we also generate
a trim-texture [15] based on the number of sub-patches. We then
compute the moment contribution from each patch by multiply-
ing the corresponding functions for moments with the integration
weights. Finally, we compute the sum of all the sub-patch moment
contributions to get the moment contribution of the surface.

4.1 GPU Implementation
Once we have evaluated the surface coordinates and normals at

the integration points using our GPU NURBS evaluator, we com-
pute the moment contribution of each surface sub-patch in parallel
using the GPU. We compute four moment values simultaneously,
since GPUs are optimized for simultaneously computing values us-
ing the four RGBA channels. For example, we compute the volume
and the three first moments simultaneously in a single pass. We
compute the moment contribution for each sub-patch by multiply-
ing the moment functions with the integration weights. The mo-
ment functions are polynomial functions of the surface coordinates
that correspond to the moment being computed; they are given by
the corresponding equations in Section 3.3. The integration weights
are based on the type of integration used (Section 5).

Once we have computed the individual contributions of each the
sub-patches, we sum the values to get the surface moments by us-
ing GPU reduction. This operation is one of the fundamental op-
erations used for GPU CAD in our GPU framework [18]. GPU
reductions include reducing the given input to a single value such
as computing the sum, min, max, etc. If the given input is a square
texture with a size that is a power of two, then we reduce four adja-
cent values (the sum in this case) to a single value in a given pass.
Thus the total reduction operation can be performed in O(logn)
passes and hence, it is very efficient. On the other hand, if the in-
put is not a square texture, then we perform the reduction in three
stages. In the first stage, we reduce only two values along the height
or the width direction until we reach a power-of-two texture. In the
second stage, we reduce along the larger dimension until we reach a
square texture. Finally, we perform the normal reduction for square
power-of-two textures in the third stage.

We make use of Cg shader programs to implement the GPU op-
erations to perform the moment computations and reductions. This

85

is because we found in our preliminary testing that our shader pro-
grams provide better performance for NURBS evaluations com-
pared to our optimized CUDA implementation of the same algo-
rithm. In addition, making use of shader programs to perform these
operations makes our implementation cross-platform; our imple-
mentation can run on both NVIDIA and AMD GPUs.

5. NUMERICAL SURFACE INTEGRATION
We compute the surface integrals of NURBS surfaces numeri-

cally using the Gaussian quadrature rule. In numerical analysis, a
quadrature rule approximates the definite integral of a function us-
ing a weighted sum of function values at specified points within
the domain of integration. An n-point Gaussian quadrature rule
yields an exact result for the integration of polynomials up to de-
gree 2n−1 with suitable choice of points ti and weights wi (Equa-
tion (29)). The domain of integration for such a rule is convention-
ally taken as [−1, 1]; however, the domain can be easily changed
to any value by using a dummy variable for integration (Equa-
tion (30)).

∫ 1

−1

f(t) dt ≈
n∑

i=1

wif(ti) (29)

∫ b

a

f(t) dt ≈ b− a

2

n∑
i=1

wif

(
b− a

2
ti +

b + a

2

)
(30)

We can extend the quadrature rules to compute 2-dimensional in-
tegrals by having two weights; one for each direction. The integra-
tion rule can then be modified as given by Equation (31). As in the
1-dimensional case, the domain of integration is [−1, 1]× [−1, 1];
this can be converted to any rectangular domain by changing the
integration variables.

∫ 1

−1

f(t) dt ≈
n∑

i=1

n∑
j=1

wi wj f(tij) (31)

In the following sections, we provide details of the weights and
evaluation points for performing 1-point, 2-point, and 3-point Gaus-
sian quadrature integration of NURBS surfaces.

5.1 1-point Gaussian Quadrature Scheme
The 1-point quadrature or the mid-point scheme is the simplest

of the numerical integration schemes. It approximates the integral
value with a single point that is evaluated at the center of the inte-
gration domain. The standard weight used for the point is 4.0 for
the 2-dimensional case (Equation (32)). This being the simplest
rule for integration, it can only integrate accurately up to degree 1
or linear polynomials.∫ 1

−1

f(t) dt ≈ 4 f(0, 0) (32)

For integrating over the surface of a NURBS patch, we divide the
parametric domain into sub-patches along the u and v parametric
directions. For each sub-patch, we evaluate the function at its mid-
point; we perform the required change of variable implicitly. The
mid-point scheme is not accurate enough in computing the surface
integrals in many practical cases; however, it can be used to get a
rough approximation for the solution since it is easy to evaluate.
Another important advantage is that the mid-point scheme can be
implemented on the GPU using uniform grid spacing; the evalua-
tion points are separated uniformly along the u and v directions in
the parametric domain.

5.2 2-point Gaussian Quadrature Scheme
Most solid models that are created using popular CAD systems

such as SolidWorks are usually composed of bi-cubic NURBS sur-
faces. In order to compute the volume accurately for such solid
models, we need to use the 2-point quadrature scheme. Implement-
ing the 2-point quadrature scheme is slightly more involved than the
mid-point scheme since the spacing between the evaluation points
is not uniform. However, the weights used are constant and they are
equal to 1.0; the sum of the weights of the four evaluation points
is 4.0. The evaluation points in the normalized [−1, 1] domain are
−1/
√

3 and 1/
√

3. Equation (33) expands the integration terms
for the 2-dimensional case.

∫ 1

−1

f(t) dt ≈ f

(
−1√

3
,
−1√

3

)
+ f

(
−1√

3
,

1√
3

)
+f

(
1√
3
,
−1√

3

)
+ f

(
1√
3
,

1√
3

) (33)

Evaluation Point Surface sub-patch

0.
57

7
0.

21
1

0
.2

11

0.5770.211 0.211

ti

tj

Figure 3: Distribution of evaluation points in the 2-point Gaus-
sian quadrature integration scheme. All the four integration
points have a uniform weight of 1.0.

Figure 3 gives the fraction of the intervals between the evaluation
points in a single sub-patch of the NURBS surface. The evaluation
points are positioned symmetrically with respect to both the u and
v directions inside the sub-patch. Figure 4 gives an example of
the position of the evaluation points in a complete NURBS surface.

Evaluation Point Surface sub-patch

Figure 4: Example of the evaluation points’ location in the
parametric domain for computing the surface integrals using
the 2-point Gaussian quadrature integration scheme.

86

In this example, the NURBS surface is divided into 4 × 5 sub-
patches in the u and v directions respectively. The marked points’
parametric positions are sent as a vector to the GPU evaluator and
are then used to evaluate the surface coordinates and normals.

5.3 3-point Gaussian Quadrature Scheme
Computing the higher order moments accurately in a solid model

consisting of bi-cubic NURBS patches requires the 3-point quadra-
ture scheme. Computing using the 3-point scheme requires the cal-
culation of different weights for the different evaluation points. The
parametric positions, tis, of the evaluation points and their corre-
sponding weights, wis, are given by Equation (35). The definite
integral in the canonical domain is approximated by the double-
sum of the product of the weights and the integrand evaluated at
the corresponding points. It can be noted that there are nine eval-
uation points in the 2-dimensional case; the sum of the product of
the weights is 4.0.

∫ 1

−1

f(t) dt ≈
3∑

i=1

3∑
j=1

wi wj f(ti, tj) (34)

t1 = −

√(
3

5

)
, w1 =

5

9

t2 = 0, w2 =
8

9

t3 =

√(
3

5

)
, w3 =

5

9

(35)

0.3870.113 0.387 0.113

0.
38

7
0.

11
3

0.
38

7
0.

11
3

Evaluation Point Surface sub-patch

ti

tj

Figure 5: Distribution of evaluation points in the 3-point Gaus-
sian quadrature integration scheme. The size of the integration
point indicates its relative weight; the sum of all the weights
equals 4.0.

Figure 5 gives the location of the 9 evaluation points as a fraction
of the sub-patch size. The size of the evaluation point indicates its
relative weight. The center point has the maximum weight followed
by the 4 points near the edge midpoints; the 4 corner points have
the least weight.

5.4 Surface Integrals of Trimmed NURBS
We compute the surface integrals of trimmed NURBS in two

stages. In the first stage, we treat them as un-trimmed surfaces
and compute the moment contribution of each sub-patch using the

methods explained in Section 5. We classify the sub-patches into
three different cases: inside, outside or on the boundary of the trim
curves. If the sub-patch lies inside a trimmed region, its contri-
bution to the total surface integral is taken to be 0. Similarly, if
the sub-patch lies outside the trimmed region, its contribution to
the surface integral is taken as 1. The contribution for all the sub-
patches that lie on the boundary of the trim-curves is weighted by
the fraction of the sub-patch that lies outside the trimmed region.

Evaluation Point Surface sub-patch

0.
57

7
0.

21
1

0
.2

11

Trim-texture Point

0.5770.211 0.211

ti

tj

Figure 6: Example of the distribution of the trim-texture points
for a case with 4 points in each parametric direction. The
2-point Gaussian quadrature integration scheme evaluation
points are also shown for comparison.

In order to perform the weighting operation, we generate a trim-
texture on the GPU by using a method we developed in our previ-
ous work [15]. In this method, we create a binary texture that has
the value 0 in the trimmed regions of the surface in the parametric
domain. In order to obtain an accurate value for the moments, we
set the height and width of the trim texture to be three or four times
the number of sub-patches in the u and v direction. We find the
fraction of the number of points that lie outside the trimmed region
in a given sub-patch and multiply the moment contribution of the
sub-patch with this fraction. Figure 6 shows an example where the
trim texture is evaluated 4 times more densely than the number of
sub-patches in each of the u and v parametric direction. This leads
to a total of 16 positions inside the sub-patch where the trim is eval-
uated. The moment contribution of the patch is multiplied with the
fraction of the number of points that lie outside the trimmed region.

6. ERROR ANALYSIS
In this section, we derive estimates for the error in computing the

volume of a solid body; this analysis can be extended in a similar
manner to compute the error in higher-order moments. Computing
the errors in a Gaussian integration scheme directly is difficult since
it involves computing the 2n-order derivative for an n-point inte-
gration scheme. A known simpler method is to compute the error as
the difference between two different Gaussian integration schemes.
It can be shown that this is a good estimate for the error since the
integration value converges to the theoretical value as the order of
Gaussian integration is increased. However, the surface integrals
have to be evaluated twice using different orders of integration in
this method. In our case, we estimate the error in the integration by
computing the bounds for the coordinates used for the integration;
the bounds are compued from the maximum possible deviation of
the surface from a linear approximation. Using this method, we
compute the error in the volume of several practical CAD models
in Section 7.

87

0.97

0.98

0.99

1.00

1.01

0 50 100 150 200

N
o

rm
a

li
z
e

d
 V

o
lu

m
e

Number of sub-patches

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2

(a) Quarter Cylinder

0.997

0.998

0.999

1.000

1.001

0 2 4 6 8 10

N
o

rm
a

li
z
e

d
 V

o
lu

m
e

Multiple of base number of sub-patches

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

(b) Slanted Cylinder Block

Figure 7: Graphs showing the accuracy of our volume computation algorithm for two cases whose volume can be theoretically
computed. The volume is normalized with respect to the theoretical volume. The x-axis for the right graph shows the number of
sub-patches used for integration of each NURBS surface as a multiple of their base number of sub-patches. It can be noted that the
2 and 3-point quadrature schemes give exact results with very few sub-patches.

In our method, for each surface sub-patch, we find the second
partial derivatives of the surface as explained in Section 2.2. We
then compute the maximum deviation K for each surface sub-patch
based on the maximum second partial derivative. This gives the
maximum deviation in the coordinates used for the surface inte-
gration. By neglecting higher order error terms, we can show that
the error in volume computation can be calculated approximately
using Equation (36). Intuitively, this error estimate measures the
maximum possible deviation of the volume from the polyhedral
approximation of the NURBS surface. It can be shown from Fig-
ure 2 that this error estimate measures the volume between the two
parallel planes that are located at a distance K from the linear ap-
proximation.

∆M0 ≈
∑
i

∫
Pi

|∆z nz | du dv

≤
∑
i

∫
Pi

| 2K nz | du dv

(36)

We calculate this error simultaneously while computing the mo-
ment values. For each sub-patch in the surface, we compute the
value of K and store it in a separate texture. While computing the
moments, we compute the error terms for each sub-patch. We then
perform the multiplication and reduction operations similar to the
moment computations explained in Section 4.1. Finally, after sum-
ming all the error contributions from each sub-patch, we get the
total error for the surface. We perform the same operations on all
the surfaces to get the total error in the volume of the solid object.
In case of trimmed-NURBS surfaces, we consider only the error
contributions from those sub-patches that lie outside the trimmed
region.

7. RESULTS
We timed our GPU-accelerated queries on a 2.40GHz CPU (dual

core) running Windows XP with 3GB of RAM and an NVIDIA
GeForce 9600M GT GPU with 256MB graphics memory. First,
we discuss the accuracy of our algorithm by using it to compute
moments of trimmed-NURBS solid models whose volume can be
calculated theoretically. Next, we vary our integration schemes and

the number of sub-patches used for the integration and check for
the convergence of the solution. Finally, we compare the actual
values of volume and center of mass of complex CAD models with
the moment values obtained using ACIS; we also compare the time
for the computations.

Accuracy of the Integration
Since the exact value for the moments are very difficult to obtain
for practical models, we tested the accuracy of our integration on
a single NURBS patch of a quarter cylinder. We chose a cylinder
since we can accurately compute its theoretical volume and cen-
ter of mass for comparison, yet it is non-trivial for our GPU al-
gorithm to evaluate since it is a rational surface. In addition, the
cylinder was placed horizontally in the coordinate system to make
sure the moment contributions from the cylindrical surfaces are not
zero. As expected, the higher order quadrature schemes provide a
more accurate answer, particularly with smaller numbers of sub-
patches (Figure 7(a)).

In order to assess the accuracy of our algorithm with the pres-
ence of trimmed NURBS surfaces, we constructed a solid object
consisting of a block with a slanted cylindrical section cut from it
(Figure 1(i)). We can theoretically calculate the volume and center
of mass of this object since the slanted cylinder is still a prism with
a circular base. Figure 7(b) shows the accuracy as a function of
the base number of patches used for evaluating each NURBS sur-
face. We set the base number of sub-patches equal to the number
of knot intervals in the respective u and v parametric direction of
the NURBS surface, the total base number of sub-patches for this
model being 128.

Volume and Error Analysis of CAD Objects
In order to test the applicability of our algorithm to realistic solid
models, we computed the volume of several CAD models with mul-
tiple trimmed NURBS surfaces. For comparison, we calculated the
volume of the models using ACIS with accuracy 0.001 measured
as a fraction of the computed moment; calculating to a higher accu-
racy using ACIS took too long to be practically applicable. In ad-
dition, the ACIS algorithm does not have a bound on the precision
of the mass properties because of hard-coded convergence criteria
in their functions [28]. If the accuracy does not meet the requested

88

0.970

0.980

0.990

1.000

1.010

0 2 4 6 8 10

N
o

rm
a
li
z
e
d

 V
o

lu
m

e

Multiple of base number of sub-patches

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

0.000001

0.00001

0.0001

0.001

0.01

0.1

0 2 4 6 8 10

E
s
ti

m
a
te

d
 E

rr
o

r

Multiple of base number of sub-patches

2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

Figure 8: Graphs showing the convergence of our volume computation algorithm for the “Hammer” model. The volume is shown
as a fraction of the volume computed by ACIS. The x-axis shows the number of sub-patches used for integration as a multiple of
the base number of sub-patches of the model, the base number of sub-patches being 3859 in this case. Note logarithmic scale in the
y-axis of the error graph.

value, they tighten the convergence criteria and repeat the calcula-
tion. However, if the mass properties remain unchanged, they are
as close as can be achieved by their algorithm. In our algorithm,
we estimate the error in the volume while using 2-point or 3-point
quadrature integration as explained in Section 6.

We computed the volume of these objects using 1-point, 2-point,
and 3-point quadrature by varying the number of sub-patches that
are used for the integration of each NURBS surface. As before, we
set the base number of sub-patches equal to the number of knot in-
tervals in the respective u and v parametric direction of the NURBS
surface. Figure 7 shows the convergence in the volume computa-
tion for the “Hammer” model shown in Figure 1(f).

Moment Computation Results
We compared the results for evaluating the volume and center of
mass of different CAD objects that were made of multiple trimmed-
NURBS surfaces using both our GPU algorithm and ACIS. Table 1
summarizes the results of the computations. However, it should be
noted that neither the ACIS mass properties function nor our GPU
algorithm have been optimized for performance. In addition, the
time taken by our GPU algorithm includes the time for evaluating
all the NURBS surfaces, which takes the largest percentage of the
total time (≈ 90%). The values were computed using the 2-point
quadrature scheme with the number of sub-patches equal to twice
the base number of sub-patches for each surface in both paramet-
ric directions. It can be noted that our GPU algorithm computes
accurate moments with low estimated errors.

An advantage of our GPU algorithm is that the updates to the
volume and center of mass due to changes in a single surface can
be performed interactively. For example, the GPU algorithm com-
putes the volume and the center of mass for the “Freeform” model
in less than 0.02s. This means that even though the initial mo-
ment computation for complex models takes more than a second,
the moment values can be updated up to 50 times per second while
interactively editing the solid model.

8. CONCLUSIONS
We have developed a hybrid framework that uses GPUs to ac-

celerate moment computations. Our moment computations can be
performed interactively, while the model is being edited. Our al-
gorithms have error estimates and they are based on object-space
resolution instead of just image-space resolution. They make use

of actual surface data and not just the tessellation, which make
them independent of tessellation errors. We also show tremendous
performance and accuracy improvements over existing commercial
CPU-based systems.

Our GPU-based surface integration algorithms can be extended
for use in analysis tools such as FEA. Accurate and fast surface in-
tegration will aid in interactive analysis of complex objects that will
provide functional feedback to the designer. Such functional feed-
back will reduce the design lead time of a component, ultimately
resulting in significant cost savings.

Acknowledgments
We would like to thank NVIDIA and AMD for providing us with their hard-
ware. The models used in the paper were downloaded from 3D Content
Central [1]. We would also like to thank the reviewers for their valuable
comments and suggestions. This material is based upon work supported in
part by SolidWorks Corporation, UC Discovery under Grant No. DIG07-
10224, and the National Science Foundation under CAREER Award No.
0547675.

References
[1] 3D Content Central. http://www.3dcontentcentral.com, 2009.

[2] S. Briseid, T. Dokken, T. R. Hagen, and J. O. Nygaard. Computational
Science - Lecture Notes in Computer Science, volume 3994/2006,
chapter Spline Surface Intersections Optimized for GPUs, pages 204–
211. Springer, 2006.

[3] C. Cattani and A. Paoluzzi. Boundary integration over linear polyhe-
dra. Computer Aided Design, 22(2):130–135, 1990.

[4] D. Filip, R. Magedson, and R. Markot. Surface algorithms using
bounds on derivatives. Computer Aided Geometric Design, 3(4):295–
311, 1987.

[5] C. Gonzalez-Ochoa, S. McCammon, and J. Peters. Computing mo-
ments of objects enclosed by piecewise polynomial surfaces. ACM
Transactions on Graphics, 17(3):143–157, 1998.

[6] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. CULLIDE:
Interactive collision detection between complex models in large en-
vironments using graphics hardware. In ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware, pages 25–32. Euro-
graphics Association, 2003.

[7] A. Greß, M. Guthe, and R. Klein. GPU-based collision detection
for deformable parameterized surfaces. Computer Graphics Forum,
25(3):497–506, 2006.

89

Object
GPU ACIS

Volume Estimated Volume
Error Fraction

Center of Mass Time (s) Volume Center of Mass Time(s)

Scooby 1.99516×108 6.248×10−2 0.438 1.516 1.99601×108 0.330 15.547
654.325 653.821

92.532 92.381

Trefoil 8.57171×106 4.658×10−3 -0.225 0.063 8.57174×106 -0.225 0.175
0.251 0.251
0.112 0.112

Freeform 9.79816×105 1.251×10−3 -0.002 0.015 9.82948×105 0.001 0.718
57.366 57.433
-2.883 -2.876

V8 Engine 9.97957×106 1.933×10−6 -1.011 1.188 9.99160×106 -0.626 5.078
93.136 93.535

261.283 260.435

Engine 1.29932×105 1.000×10−5 -0.741 0.235 1.30284×105 -0.748 0.922
20.112 20.003
12.640 12.726

Race Car 1.83031×109 5.534×10−5 -1.005 0.703 1.83799×109 0.021 4.140
356.936 356.846

1362.790 1364.280

Table 1: Moment and center of mass values computed by our GPU algorithm and ACIS for different CAD models. Our values were
computed using the 2-point quadrature scheme with 22 times the base number of sub-patches for each surface. The errors were
estimated using our method explained in Section 6.

[8] K. Jorabchi, J. Danczyk, and K. Suresh. Efficient and automated anal-
ysis of potentially slender structures. Journal of Computing and In-
formation Science in Engineering, 9(4), 2009.

[9] R. Khardekar. Real-time manufacturability feedback. PhD thesis, Uni-
versity of California, Berkeley, Mechanical Engineering Department,
2008.

[10] R. Khardekar and S. McMains. Fast layered manufacturing support
volume computation on GPUs. In Proceedings of the ASME Design
Engineering Technical Conferences. ASME, 2006.

[11] J. Kim, S. Kim, H. Ko, and D. Terzopoulos. Fast GPU computation of
the mass properties of a general shape and its application to buoyancy
simulation. Visual Computer, 22(9):856–864, 2006.

[12] P. Kipfer, M. Segal, and R. Westermann. UberFlow: a GPU-based par-
ticle engine. In Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS Conference on Graphics Hardware, pages 115–122. ACM, 2004.

[13] L. Kobbelt. Robust and efficient evaluation of functionals on para-
metric surfaces. In SCG ’97: Proceedings of the thirteenth annual
symposium on computational geometry, pages 376–378. ACM, 1997.

[14] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation
and collision detection for large particle systems. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, pages 123–131. ACM, 2004.

[15] A. Krishnamurthy, R. Khardekar, and S. McMains. Optimized GPU
evaluation of arbitrary degree NURBS curves and surfaces. Computer
Aided Design, 41(12):971–980, 2009.

[16] A. Krishnamurthy, R. Khardekar, S. McMains, K. Haller, and G. El-
ber. Performing efficient NURBS modeling operations on the GPU.
In ACM Symposium on Solid and Physical Modeling, pages 257–268.
ACM, 2008.

[17] A. Krishnamurthy, R. Khardekar, S. McMains, K. Haller, and G. El-
ber. Performing efficient NURBS modeling operations on the
GPU. IEEE Transactions on Visualization and Computer Graphics,
15(4):530–543, 2009.

[18] A. Krishnamurthy, S. McMains, and K. Haller. Accelerating geo-
metric queries using the GPU. In SIAM/ACM Joint Conference on
Geometric and Physical Modeling, pages 199–210. ACM, 2009.

[19] Y. T. Lee and A. A. G. Requicha. Algorithms for computing the vol-
ume and other integral properties of solids. I. Known methods and
open issues. Communications of the ACM, 25(9):635–641, 1982.

[20] Y. T. Lee and A. A. G. Requicha. Algorithms for computing the vol-
ume and other integral properties of solids. II. A family of algorithms
based on representation conversion and cellular approximation. Com-
munications of the ACM, 25(9):642–650, 1982.

[21] A. M. Messner and G. Q. Taylor. Algorithm 550: Solid polyhe-
dron measures [z]. ACM Transactions on Mathematical Software,
6(1):121–130, 1980.

[22] B. Mirtich. Fast and accurate computation of polyhedral mass prop-
erties. Journal of Graphics Tools, 1(2):31–50, 1996.

[23] J. Peters and A. Nasri. Computing volumes of solids enclosed by
recursive subdivision surfaces. Computer Graphics Forum, 16:89–94,
1997.

[24] L. A. Piegl and W. Tiller. The NURBS Book. Springer, second edition,
1997.

[25] W. Rudin. Principles of Mathematical Analysis, chapter Integration
of Differential Forms, pages 253–275. McGraw-Hill, 3 edition, 1976.

[26] W. A. Samad and K. Suresh. CAD-integrated analysis of 3-D beams:
A surface-integration approach. Engineering with Computers, Sub-
mitted Aug 2009.

[27] O. Soldea, G. Elber, and E. Rivlin. Exact and efficient computa-
tion of moments of free-form surface and trivariate based geometry.
Computer-Aided Design, 34(7):529–539, 2002.

[28] Spatial Corporation. ACIS Geometric Modeler: User Guide, 2009.
Version 20.0.

[29] H. Timmer and J. Stern. Computation of global geometric properties
of solid objects. Computer-Aided Design, 12(6):301–304, 1980.

90

