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Abstract

We present a parallel GPU-accelerated algorithm for computing the directed Hausdorff distance from one NURBS surface to
another, within a bound. We make use of axis-aligned bounding-box hierarchies that bound the NURBS surfaces to accelerate the
computations. We dynamically construct as well as traverse the bounding-box hierarchies for the NURBS surfaces using operations
that are optimized for the GPU. To compute the Hausdorff distance, we traverse this hierarchy after culling bounding-box pairs that
do not contribute to the Hausdorff distance. Our contribution includes two-sided culling tests that can be performed in parallel using
the GPU. The culling, based on the minimum and maximum distance ranges between the bounding boxes, eliminates bounding-
box pairs from both surfaces that do not contribute to the Hausdorff distance simultaneously. We calculate accuracy bounds for our
computed Hausdorff distance based on the curvature of the surfaces. Our algorithm runs in real-time with very small guaranteed
error bounds for complex NURBS surfaces. Since we dynamically construct our bounding-box hierarchy, our algorithm can be
used to interactively compute the Hausdorff distance for models made of dynamic deformable surfaces.

Keywords: Hausdorff Distance, NURBS, GPU, Geometric Algorithms

1. Introduction

The Hausdorff distance is a useful measure of the similarity
between geometric objects. There are many applications that
benefit from an efficient computation of the Hausdorff distance,
including shape matching [Alt et al., 1995], mesh simplification
[Guthe et al., 2005b], geometric approximation [Varadhan and
Manocha, 2006], and penetration depth calculation for physi-
cally based animation [Tang et al., 2009]. As a result, the Haus-
dorff distance computation has attracted considerable research
attention in computer graphics, computational geometry, and
geometric modeling. However, most previous work focused on
computing the Hausdorff distance for polygons and polygonal
meshes.

This paper introduces a GPU-accelerated algorithm for the
computation of the Hausdorff distance for NURBS surfaces,
which remain the de facto standard for CAD models. Our algo-
rithm runs in real-time with very small guaranteed error bounds
for complex NURBS surfaces. Since we do not rely on pre-
processing the input, our algorithm can be used to interactively
compute the Hausdorff distance for models made of dynamic
deformable surfaces.

∗Corresponding Author
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1.1. Contributions
In this paper, we introduce a GPU-accelerated algorithm for

computing the directed Hausdorff distance from one NURBS
surfaces to another. Our main contributions include:

• A GPU-accelerated Hausdorff distance computation for
NURBS surfaces. We perform GPU traversal of a
bounding-box hierarchy to compute the Hausdorff dis-
tance after selectively culling parts of the surface that do
not contribute to the Hausdorff distance. To the best of our
knowledge, this is the first completely implemented algo-
rithm to compute the Hausdorff distance for pairs of com-
plex curved surfaces without requiring pre-tessellation.

• Novel culling tests that cull bounding-box pairs that do not
contribute to the Hausdorff distance based on the range of
minimum and maximum distance between the pairs. We
perform two culling tests that bound both the minimum
and maximum value of the Hausdorff distance for two-
sided culling.

• Ability to efficiently compute a tight range for the Haus-
dorff distance and also the locations on the surfaces where
the Hausdorff distance is within this bound.

• Theoretical bounds for the Hausdorff distance computa-
tions. We can guarantee user-defined tolerance values
based on curvature-based bounds on the NURBS surfaces.

• Interactive computation of the Hausdorff distance between
models made of dynamic deformable surfaces.
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(a) (b) (c) (d)

Figure 1: Computing the Hausdorff distance for NURBS surfaces; the arrows connect the locations on the two models where the
Hausdorff distance is achieved. The tail of the arrow indicates the surface over which the minimum distances are maximized.

2. Related Work

The Hausdorff distance computation has attracted consider-
able research attention in computer graphics, computational ge-
ometry, and geometric modeling. Atallah [1983] developed a
linear time algorithm for computing the Hausdorff distance be-
tween planar convex polygons. For simple non-convex poly-
gons with m and n vertices, Alt et al. [1995] presented an al-
gorithm, which is based on Voronoi diagrams, with O((n +

m) log(n + m)) running time.
In <3, for polygonal meshes with O(n) triangles, Alt et al.

[2003] presented theoretical and randomized algorithms. Their
deterministic algorithm (a special case of a general theorem
they prove for<d) runs in O(n5) asymptotic time. Using a ran-
domized lower envelope algorithm, they arrive at an O(n3+ε)
randomized algorithm, and with minor additional requirements
on the input they achieved a sub-cubic randomized algorithm.
These algorithms are based on sophisticated data structures and
algorithms and therefore are of a theoretical nature. To the
best of our knowledge, they have never been implemented. Re-
cently, Bartoň et al. [2010] presented an O(n4 log n) determin-
istic algorithm for computing the precise (up to floating point)
Hausdorff distance between polygonal meshes. However, the
high runtime complexity makes their implementation too slow
(seconds) for large meshes.

Due to the complexity of computing the Hausdorff distance
exactly, approximate practical algorithms have been proposed.
Llanas [2005] proposed two approximate algorithms for non-
convex polytopes, based on random covering. Guthe et al.
[2005b] proposed an approximate algorithm for meshes that
finds high-distance regions by performing an octree search.
These regions are then further subdivided and regions that can-
not attain the Hausdorff distance are purged away.

In a recent paper, Tang et al. [2009] implemented an approx-
imate algorithm, which is similarly based on a Bounding Vol-
ume Hierarchy (BVH) that is computed during preprocessing.
Using the BVH, many of the triangles are culled away based

on upper and lower bounds that are updated as the algorithm
progresses. The triangles that pass the culling are further sub-
divided until the difference between the upper and lower bound
on the Hausdorff distance is smaller than a user-defined toler-
ance. This results in an approximate distance, which is within
the user-defined tolerance of the actual Hausdorff distance be-
tween the two meshes. Their implementation is very fast in
practice, running at interactive speed for meshes of practical
size.

On computing the Hausdorff distance between freeform sur-
faces, there are fewer previous results. For freeform curves, Alt
and Scharf [2004, 2008] presented an algorithm for the Haus-
dorff distance computation, based on a characterization of the
possible points where the distance can be attained. Chen et al.
[2010] presented an algorithm for computing the Hausdorff dis-
tance between two B-Spline curves. The algorithm improves
the one from Alt and Scharf [2008] by using a pruning tech-
nique to save computation time. Kim et al. [2010] presented a
real-time algorithm for planar curves. The algorithm assumes
that the planar curves are approximated by biarcs in a prepro-
cessing stage and makes use of the GPU depth buffer to detect
high distance regions efficiently. Recently, Bai et al. [2011]
have computed an approximate Hausdorff distance between
planar free-form curves by approximating the input curves with
polylines and then computing the Hausdorff distance between
the line segments.

Elber and Grandine [2008] extended the results from Alt and
Scharf [2004] to Hausdorff distance computations, not only be-
tween planar curves, but also between curves and surfaces in
<3. The performance of their algorithm is quite efficient for
the case of planar/space curves. However, for the Hausdorff
distance between a freeform surface and another curve or sur-
face, the algorithm takes several seconds. To the best of our
knowledge, this is the only published previous work that dis-
cusses the problem of this paper.
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3. Overview

In this section, we first mathematically define the Hausdorff
distance between two sets in <3. Subsequently, we present an
overview of our algorithm highlighting the different steps. We
then explain the steps in detail in the following sections.

3.1. Mathematical Preliminaries
Definition 1. (Hausdorff Distance) Given two compact sets A
and B in <3, the Hausdorff distance from A to B is given by
Equation (1), where d(., .) is the Euclidean distance in<3.

h(A,B) = max
a∈A

(
min
b∈B

d(a,b)
)

(1)

Sometimes this anti-symmetric Hausdorff distance is referred
to as the “directed” or “one-sided” Hausdorff distance, but we
will simply refer to it as the Hausdorff distance for the remain-
der of this paper.

3.2. Algorithm Overview
Our algorithm to find the Hausdorff distance consists of three

steps. We first construct bounding-box hierarchies (Section (4))
that enclose sub-patches of the NURBS surfaces using the GPU
(Figure (2)). If the surfaces are not changing, this step can be
performed during initialization. In the second step, we traverse
this hierarchy on the GPU, building a virtual 2D array of min-
max distance ranges for pairs of bounding-boxes from the two
input surfaces (Figure (3)), starting at the coarsest level of the
hieararchy. At each level, we perform two tests to cull pairs
that could not contain sub-patches potentially contributing to
the Hausdorff distance (Section (5.1)). For the first test, we cal-
culate per-row Hausdorff distance maximums and cull ranges
with a minimum distance value greater than the corresponding
maximum; for the second test, we calculate a global Hausdorff
distance minimum and cull rows containing ranges with a maxi-
mum distance value less than this minimum. An efficient imple-
mentation of this hierarchical culling with virtual array packing
is detailed in Section (5.2). Finally, in the last step, we compute
the Hausdorff distance between the surface patches that lie in-
side the potential bounding-box pairs in the finest level of the
hierarchy.

Surface 2 

Surface 1 

Figure 2: Surface bounding-boxes constructed at the coarsest
level of the hierarchy constructed for two sample input surfaces.
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Figure 3: Virtual 2D representation of the min-max distances
between the bounding-box pairs. The colors correspond to the
bounding-boxes in Figure (2).

4. Hierarchical Bounding Boxes for NURBS

We employ an axis-aligned bounding-box (AABB) hierar-
chy for the NURBS surfaces as an accelerating data structure
to compute the Hausdorff distance using the GPU. We chose
AABBs over a more complex BVH such as spherical shells or
oriented bounding boxes (OBBs) [Krishnan et al., 1998] be-
cause the efficiency of GPU programs can be reduced dramat-
ically with increases in the complexity of the parallel kernels
that are used. The individual computational kernels for OBBs
are more complex and contain many branching conditions; the
GPU typically must wait until the most computationally inten-
sive branch of the kernel in a particular block is completed be-
fore proceeding to the next block. In addition, since OBB ker-
nels make use of more temporary registers, the number of com-
putations that can be active (“in flight”) simultaneously on the
GPU is reduced; it may be difficult to hide the memory access
latency in this case. Thus, we found that the advantage provided
by tight OBBs might be offset by the increase in complexity of
the kernels that use them.

We evaluate the NURBS surface on the GPU in a uni-
formly sampled regular grid in parametric space and then con-
struct AABBs that enclose the surface sub-patches that lie be-
tween each group of four adjacent surface points, similar to the
method explained in Krishnamurthy et al. [2009] (Figure (4)).
We used an optimized CUDA implementation of the surface
point evaluation to evaluate the NURBS surface. (An alter-
nate GPU NURBS evaluation method such as the one described
by Kanai [2007] could also be used, but that approach requires
writing different GPU kernels for different-order surfaces.)

Figure 4: Surface bounding-boxes constructed from points
evaluated on a NURBS surface.
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Since the surface patches enclosed by the bounding boxes
are curved, some part of the surface might penetrate out of the
bounding box if we were to merely use the coordinates of the
four evaluation points to construct the bounding boxes (see Fig-
ure (5)). To guarantee that the bounding boxes enclose their
surface patches, we expand the bounding boxes based on the
curvature of the surface patch. Using this method, the bound-
ing boxes automatically become tighter when we evaluate the
surface at a finer resolution.

The analytical expression for the factor that can be used to
expand the bounding boxes based on the surface curvature was
originally given by Filip et al. [1987]. They show that if a para-
metric C2 surface S is evaluated at (n + 1)× (m + 1) grid points,
the deviation of the surface from the piecewise linear approxi-
mation cannot exceed a constant K, which is a function of the
magnitude of the maximum curvature vector on the surface, as
defined by Equations (2)–(5). We use this K to derive bounds
for our computed Hausdorff distance.

K =
1
8

(
1
n2 M1 +

2
nm

M2 +
1

m2 M3

)
(2)

M1 = max
∀(u,v)

∣∣∣∣∣∣
∣∣∣∣∣∣∂2S
∂u2

∣∣∣∣∣∣
∣∣∣∣∣∣ (3)

M2 = max
∀(u,v)

∣∣∣∣∣∣
∣∣∣∣∣∣ ∂2S
∂u∂v

∣∣∣∣∣∣
∣∣∣∣∣∣ (4)

M3 = max
∀(u,v)

∣∣∣∣∣∣
∣∣∣∣∣∣∂2S
∂v2

∣∣∣∣∣∣
∣∣∣∣∣∣ (5)

K K

K
K

Figure 5: We expand the AABBs by K in all three dimensions
to guarantee that the surface patch is completely enclosed.

Once we construct the bounding boxes at the finest level of
the hierarchy, we use a bottom-up approach to construct the
BVH. We construct the bounding-box hierarchy by recursively
combining four adjacent bounding boxes at a finer level to get
the next coarser level. We repeat this operation until we get
a single zeroth-level bounding box that encloses the whole sur-
face. This bottom-up approach to hierarchy construction allows

the use of the tighter curvature bounds from the densest sam-
pling throughout the hierarchy. Lauterbach et al. [2009, 2010]
have recently developed a GPU algorithm where the BVH is
constructed top-down, but a top-down approach is not as at-
tractive for freeforms. Our approach allows using tight bounds
since in a top-down method, one can only calculate very loose
bounds because estimated local-curvature accuracy can only be
refined after more evaluation points are available; thus the ini-
tial higher-level bounding boxes cannot be as tight as with a
bottom-up approach.

(a) Model Space

(b) Parametric Space

Figure 6: We construct the bounding-box hierarchy by recur-
sively combining four bounding boxes from the finer level to get
the next coarser level.

5. Hierarchy Traversal on the GPU

Once we have a bounding box hierarchy, we traverse this hi-
erarchy on the GPU by selectively culling bounding-box pairs
that cannot contain the surface sub-patches corresponding to
the Hausdorff distance. To aid in the culling process, we al-
locate another array on the GPU that we will refer to as the
min-max “distance matrix” that contains the distance ranges be-
tween pairs of bounding boxes, calculating the distance ranges
in parallel using the GPU-friendly approach detailed in [Krish-
namurthy et al., 2009]. If the bounding boxes overlap, we take
the minimum distance between them as zero. We store the mini-
mum and maximum distance in the global memory of the GPU,
since the sizes of these arrays can be larger than what can fit
into shared memory. We then use these min-max distances for
computing the Hausdorff distance.

5.1. Culling Tests
Bounding box hierarchy culling for Hausdorff distances is

more complex than for traditional distance metrics because of
the presence of both a minimum and a maximum in the formula
(Equation (1)), which must be coordinated with the distance
ranges for the bounding boxes. We will explain the culling por-
tion of our algorithm using as a concrete example the level 1
(top) of the hierarchy, containing 4 bounding boxes from each
surface (as illustrated in Figure (2)). We compute the min-max
distances for all 16 pairs of bounding boxes and store them
as a 4 × 4 distance matrix (Figure (7) for this example). In
this matrix, as in Figure (3), each row corresponds to distance
ranges between a surface1 sub-patch’s bounding box and the
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bounding boxes of the different sub-patches of surface2; simi-
larly, each column contains distance ranges between a surface2
sub-patch’s bounding box and the bounding boxes of the dif-
ferent sub-patches of surface1. Thus, each entry is the distance
range for a pair of bounding boxes. If the entries of the ma-
trix were exact distance values instead of ranges, to find the
Hausdorff distance, we would only need to find the minimum
value for each row and then find the maximum of these min-
imum values. However, since the entries are ranges, we cull
those ranges that cannot contribute to the Hausdorff distance.
We apply two culling tests to cull the bounding-box pairs that
cannot contribute to the Hausdorff distance.
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Figure 7: The minimum and maximum distance ranges for the
bounding-box pairs. The range of distance is represented by the
colored regions for each pair.

Keeping in mind that the Hausdorff distance is the maximum
of the minimum distances from points on surface1, we first cull
based on the bound on the maximum possible value of the min-
imum distance from each surface1 bounding box, which cor-
responds to the maximum possible minimum distance per row.
Since the actual minimum distance between a pair of bound-
ing boxes can be anywhere in the range pictured, we can only
exclude those bounding-box pairs whose range lies completely
above the smallest maximum value in a row. To perform this
culling, we first find the smallest maximum value in each row
as shown by the shaded boxes in Figure (8(a)). We then use this
value as a cut-off and cull all the bounding-box pairs whose
minimum value is greater than the smallest maximum value in
each row. In Figure (8(b)) the candidate bounding-box pairs
that are not culled for the example case are shaded.

(a) Smallest max distance in each row. (b) Ranges having min value less than
smallest max distance in a row are not
culled.

Figure 8: The first culling test.

The second culling test is based on a global bound on the
minimum value of the Hausdorff distance. We calculate this
bound by first finding the smallest minimum distance in each

row (Figure (9(a)). We then find the largest of these smallest
minimum distance values as shown in Figure (9(b)). This value
gives a lower bound on the Hausdorff distance. We use this
bound to find all bounding-box pairs whose range lies com-
pletely below this lower bound value (Figure (9(c))). Such
ranges indicate that the surface1 bounding-box corresponding
to that row has a smaller minimum distance to surface2 than the
Hausdorff distance lower bound calculated in Figure (9(b)), so
it cannot contribute to the Hausdorff distance. Thus we can cull
all pairs in such rows.

(a) Smallest min distance in each row. (b) Largest of these smallest min dis-
tances.

(c) Ranges with max value less than
the largest of the smallest min dis-
tances. Their rows are culled.

(d) Entries that pass both culling tests.

Figure 9: The second culling test. The Hausdorff distance is
greater than the green line in Figure (9(c)), so its first two rows
are culled. The shaded pairs in Figure (9(d)) pass both this and
the previous culling tests.

We apply both these culling tests simultaneously and only
those bounding-box pairs that pass both the tests are finally
passed on for subdividing and further testing at the next level
of refinement in the hierarchy. Figure (9(d)) shows the result of
applying both the culling tests to the example case.

5.2. GPU Hierarchy Traversal Implementation

Our GPU implementation of the hierarchy traversal consists
of two steps for each hierarchy level. In the first step, at any
given level, we construct the min-max distance matrix consist-
ing of the bounding-box pairs that remain potential candidates
for the Hausdorff distance. At finer levels of the hierarchy, there
will be too many bounding-box pairs to devote a separate row
to each unique bounding-box from surface1. In addition, since
more and more pairs will also be culled away, we must pack the
remaining pairs into the matrix. In the second step, we apply
the culling tests on these pairs. In order to perform the culling
tests correctly on the packed min-max distance matrix, we also
need to maintain bounding-box labels that indicate which orig-
inal bounding-box of surface1 defines each distance range, so
that distance ranges from the same original surface1 bounding
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Figure 10: Two levels of the bounding-box hierarchy stored
on the GPU. We refer to this hierarchy while explaining our
hierarchy traversal algorithm.

box can continue to be grouped together (the row groupings in
Figures (8) and (9)). We allocate an “address” array to aid in
both the construction of the packed min-max distance matrix
and the culling operation. Finally, we collect all the bounding-
box pairs that are not culled and pass them to the next hierarchy
level.

0A 0B 0C 0D 

1A 1B 1C 1D 
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3A 3B 3C 3D 

(a) Level 1

0A 0D 1A 

2A 2C 3A 

3B 3C 

(b) Non-culled pairs
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(c) Level 2

Figure 11: Address arrays used to aid in the hierarchy traver-
sal. Based on bounding-box pairs not culled in level 1, the level
2 bounding-box pairs are constructed.

We will explain the two steps of the process using an ex-
ample starting with the min-max distance matrix generation.
Figure (10) is the original bounding box hierarchy from which
the min-max distance matrix will be calculated. We start with
the bounding-box pairs that are culled in level 1. In Fig-
ure (11(a)), the lighter-shaded boxes correspond to the non-
culled bounding-box pairs at this level. We collect these pairs
and pack them into a square array that serves as an address tem-
plate to the bounding boxes in the hierarchies of both surfaces
to perform the refinement (Figure (11(b))). Using this infor-

mation, and knowing the hierarchical layout pattern from Fig-
ure (10), we create the address array for the next level of the
hierarchy (Figure (11(c))). Once we have the address array, we
can construct the corresponding min-max distance matrix with
the same structure. We compute the min-max range of distances
between the bounding-box pairs specified by each entry of the
address array.

We now proceed to perform the culling operations using this
min-max distance matrix. In order to perform the culling, we
need to compute the bounds for the Hausdorff distance (ex-
plained in Section (5.1)) based on this min-max distance matrix.
For applying the first culling test, this is a “segmented reduc-
tion” of the min-max distance matrix to compute the smallest
maximum distance for each group of pairs corresponding to the
same surface1 bounding box. In order to perform this opera-
tion on the GPU, we would first need to sort the bounding-box
pairs with respect to their surface1 bounding-box labels and
perform the segmented reduction using segmented scan [Sen-
gupta et al., 2007]. Both these operations are supported by
Thrust1, a CUDA library of parallel algorithms with an inter-
face resembling the C++ Standard Template Library (STL).
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(a) Level 2 After Culling
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18N 19P 

(b) Non-culled pairs

Figure 12: Creating the address array for the next finer level
based on the non-culled bounding-box pairs in a level.

In our current implementation, we perform the “segmented
reduction” operation on the CPU. We then create a new array
with the smallest maximum distance value for each unique sur-
face1 bounding-box label and send it back to the GPU to per-
form the culling. The disadvantage of performing this step on

1http://code.google.com/p/thrust
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the CPU is the extra data-transfer step that could potentially be
costly. On the other hand, by performing this operation on the
CPU, we can avoid the sort operation by maintaining a hash ta-
ble that is based on the surface1 bounding-box label. We scan
through all the min-max distance ranges and maintain the cur-
rent bounds on the smallest maximum distance for each sur-
face1 bounding-box in this hash table. (Note that each min-max
distance range is tagged with a surface1 bounding-box label).

We also compute the global largest of the smallest minimum
distance for the second culling operation (Figure (9(a)-9(c)))
in a similar manner. We then perform the combined culling
operation shown in Figure (9(d)). After the culling operation,
we again collect the bounding-box pairs that are not culled and
refine them to the next level of the hierarchy (Figure (12(b))).
(Note that by now, the references to surface1 bounding boxes
are not only out of order, but they are no longer contiguous;
more coherence is lost at each step of refinement.)

Once we reach the finest level of the hierarchy, we get the list
of bounding-box pairs that could potentially contribute to the
Hausdorff distance. We then find the (approximated) Hausdorff
distance between the surface sub-patches contained in these
pairs of bounding-boxes by first decomposing the surface sub-
patches into two triangles each, using the four evaluated points
on each of surface1 and surface2, and then finding the Haus-
dorff distance between the triangles. We find the minimum dis-
tance between the triangles (2 for each sub-patch resulting in
4 different triangles pairs) in each sub-patch pair in the list in
parallel using the GPU. However, typically the list will have
multiple entries for the same surface1 sub-patch corresponding
to pairing it with different surface2 sub-patches. For each sur-
face1 sub-patch that is in the list, we group all its entries to find
the minimum of all the calculated triangle minimum distances
that correspond to that surface1 sub-patch. To perform this op-
eration, we again make use of a hash table based on surface1
labels (note that these labels now correspond to individual sub-
patches since we are in the finest level of the hierarchy). Finally,
to find the Hausdorff distance, we find the maximum of these
minimum distances using a standard reduction operation.

6. Theoretical Bounds for Hausdorff Distance

In this section, we make use of the curvature-based bounds
for the NURBS surfaces to derive the theoretical bounds for
our Hausdorff distance computations. Given a point in space,
the error in computing the minimum distance to a linear ap-
proximation of a curved surface, instead of to the surface itself,
is bounded by the maximum deviation K (Equation (2)) of the
approximation to the surface. We can extend this bound to the
Hausdorff distance from one surface to another.

Consider two surface patches A and B, having bounds KA

and KB respectively, with respect to their linearized approxima-
tions. The surface patches cannot deviate by more than their
respective bounds from any triangles, 4A and 4B, from their
respective linearized approximations (Figure (13)). We shall
prove that |h (4A,4B) − h (A,B)| < KA + KB and therefore the
Hausdorff distance found by our algorithm is bounded.

Curved Surface 

Linear  Approximation 

h(ΔA,ΔB) 

a1 

a3 

a2 

b1 

b3 

b2 

h(A,B) 

Figure 13: The Hausdorff distance we compute is within the
sum of the distance bounds for each surface.

First, given any point a ∈ A, the difference between
minb∈B d(a, b) and minb∈4B d(a, b) is bounded by the value KB.
Hence, |h (A,4B) − h (A,B)| < KB.

We now bound the difference in the Hausdorff distances
|h (4A,4B) − h (A,4B)|. Following the notation in Alt et al.
[2003], we first define a δ-neighborhood (Equation (6)).

nhδ(Q) = {p ∈ <3 | d(p,Q) ≤ δ} (6)

For a triangle 4, the nhδ(4) is an offset of the triangle, con-
sisting of the union of three δ-radius balls centered at the ver-
tices, three δ-radius cylinders around the edges of the triangle,
and a triangular prism of height 2δ containing 4 in its center
(nhδ(4) can also be viewed as the swept volume of a δ-ball over
4). By definition, any point within nhδ(4B) has a minimum dis-
tance to 4B that is smaller than δ and any point on the boundary
of nhδ(4B) has a minimum distance exactly δ from 4B.

Figure (14) shows a schematic 2D diagram of the triangles
4B and 4A and surface patch A (shown as a dotted green line).
We denote by hd4 = h (4A,4B), the Hausdorff distance be-
tween the triangles. The hd4 is always achieved at a vertex of

h(ΔA, ΔB) h(A, ΔB) 

ΔB 

b1 
b2 

a1 

a2 

ΔA 

K
A

 

Figure 14: Figure to prove the bound on Hausdorff distance on
surface A, |h (4A,4B) − h (A,4B)| < KA.
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4A, call it a1 (see Figure (14)). The orange curves in the fig-
ure (consisting of arcs and line segments) represent portions of
the boundary of nh(hd4)(4B) (the inner curve) and nh(hd4+KA)(4B)
(the outer curve), i.e., the triangle 4B offset by hd4 and by
(hd4 + KA) respectively.

By definition, triangle 4A is completely contained in
nh(hd4)(4B) (with a1 on its boundary). Therefore, nh(hd4+KA)(4B)
(which is an offset of nh(hd4)(4B) by KA) contains all of
nh(KA)(4A) (denoted by dotted lines in Figure (14)). This means
that any point inside the neighborhood nh(KA)(4A) cannot have
distance from 4B that is greater than (hd4+KA) and in particular
h (A,4B) < h (4A,4B) + KA.

Thus we have:

|h (4A,4B) − h (A,B) | =
|h (4A,4B) − h (A,4B) + h (A,4B) − h (A,B) | ≤
|h (4A,4B) − h (A,4B) | + |h (A,4B) − h (A,B) | <
KA + KB,

and our bound is established.

7. Results

We tested our Hausdorff distance computation algorithm on
a 3.33GHz Intel CPU equipped with an NVIDIA GeForce
GTX480 GPU running CUDA 4.0. Along with the Hausdorff
distance, we also compute the theoretical guarantees based on
the curvature of the surface. We tested our algorithms on sev-
eral different NURBS surfaces that varied in complexity, at a
large number of positions, since the algorithm is very sensitive
to the relative positions of the input. Table (1) lists the specifi-
cations for all the NURBS surfaces tested and the short names
used to refer to them later. The surface size, given as the max-
imum dimension of the smallest bounding-box that encloses it,
is used to measure the relative accuracy of our computations.

Surface Name Control
Points

Size

Green Surface Green 298 × 313 501.14

Purple Surface Purple 595 × 97 541.77

Red Surface Red 6 × 6 722.84

Brown Surface Brown 6 × 6 734.85
Yellow-
DuckBody

Yellow 14 × 13 535.45

Orange-
DuckBody

Orange 14 × 13 552.98

Table 1: Surfaces used for timing our Hausdorff distance algo-
rithm. The surfaces are shown in Figure (1).

7.1. Culling Performance

One of the first measures of the performance of our algorithm
is the number of pairs of bounding boxes that are culled using
our culling tests. The culling performance that is summarized

in Table (2) is for the surface pair (Green-Purple) at positions
shown in Figure (1(a)). The first column in Table (2) gives the
number of AABB-pairs that would need to be tested in each
level to compute the Hausdorff distance without culling. We
can see that we cull more than 99.5% from the fifth level of the
hierarchy on. This is typical of our culling performance.

Hierarchy
Level

Hierarchy
Pairs

Non-
culled

Culling
%

1 16 16 0.000%

2 256 256 0.000%

3 4096 2377 41.968%

5 1×106 3791 99.638%

7 268×106 10803 99.996%

9 68×109 46920 99.999%

Table 2: The performance of our culling tests based on the level
of the hierarchy of the surface. It can be seen that the culling
rate improves with more levels of the hierarchy.

7.2. Accuracy

We make use of our guarantees to compute the accuracy of
our Hausdorff distance computations for different surface pairs
shown in Figure (1). The error bars on each plot in Figure (15)
show actual values of our guarantees. We get extremely accu-
rate results (error < 1% of input model size) even with just six
levels of the hierarchy. Table (3) gives the relative Hausdorff
distance bound as a percentage of the average size of the two
input models at various levels of the hierarchy. The fourth col-
umn in Table (3) gives the equivalent number of triangles that
are required in a tessellation of the same surfaces to achieve the
same accuracy guarantees.

Hierarchy
Level

Green-
Purple

Accuracy

Yellow-
Orange

Accuracy

Equivalent
Triangles

5 1.643% 3.683% 2,048

6 0.451% 1.260% 8,192

7 0.131% 0.368% 32,768

8 0.038% 0.098% 131,072

9 0.009% 0.025% 524,288

10 0.002% 0.006% 2,097,152

Table 3: The guaranteed bounds of our Hausdorff distance al-
gorithm based on the actual Hausdorff distance as a percentage
of the average size of the two input models. The fourth column
gives the equivalent number of triangles that would be required
in a tessellated model of each input to achieve the same guar-
antees.
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Figure 15: Accuracy of our Hausdorff distance computation based on the number of levels of hierarchy used for the computation.
The error bars represent the guaranteed bounds calculated.

7.3. Timing Results

Figure (16) shows the computation time and the Hausdorff
distance for the three different pairs of rigidly transforming sur-
faces (Green-Purple, Red-Brown, and Yellow-Orange), interac-
tively moving the surfaces while computing to level 6 of the hi-
erarchy. The timings shown include the time taken to construct
the bounding-boxes and the hierarchy at each position, which
takes from 5-10ms at this resolution. This time also includes
the time taken to evaluate the second derivative and the bounds
for the computation. It can be seen that the average time when
the surfaces are far apart is less than 20ms. However, when the
surfaces overlap, the computation time increases due to more
unculled AABB-pairs to be tested at each level.

We also timed our algorithm while computing the Hausdorff
distances between both rigidly transforming and deforming sur-
faces while varying the number of levels of hierarchy used in
the computations. Table (4) summarizes the results for the sur-
face pairs tested. Since the computation is very sensitive to
the relative positions of the two surfaces, we report the aver-
age, minimum, and the maximum timings of about 100 dif-
ferent runs. To compute these timings for the first three non-
deforming pairs, we initially positioned the surfaces with sep-
aration distance approximately equal to their respective sizes,
then moved them closer to each other until they overlapped, and
finally continued the motion until they were again separated in
the opposite direction. For the final deforming pair, the ducks
were placed as shown in the movie, with separation distance
about equal to their size, and then the control points were ma-
nipulated with the mouse. It can be seen that on average, our
algorithm takes less than a hundred milli-seconds for comput-
ing the Hausdorff distance to a very high accuracy.

7.4. Timing Breakdown

The time differences between the different steps of our algo-
rithm are affected mainly by culling differences. The compu-
tation of the ranges for performing the culling and the actual

culling operations dominate the computation time in our cur-
rent implementation at high resolutions (Table (5)). For over-
lapping surfaces, distance computation takes a larger proportion
of the time at low resolutions (5 level BVH) because culling is
not very effective. However, as resolution increases (> 7 level
BVH), since culling often becomes more effective even as its
running time increases, this tends to reduce the final distance
computation time (occasionally more accurate results at higher
resolutions are actually faster to compute!).

7.5. Comparison With Previous Algorithms
The algorithm by Elber and Grandine [2008] was imple-

mented on the IRIT modeling environment 2 using the IRIT
multivariate polynomial solver. In their paper, they report run-
ning times of several seconds for curve/curve Hausdorff dis-
tance in <3. For the problem of this paper, the surface/surface
Hausdorff distance, there are no implementation examples in
that paper, and there is only a partial implementation in IRIT,
which computes only the Hausdorff distance attained at antipo-
dal points (the most common case). The partial implementa-
tion takes several seconds to compute the Hausdorff distance
between two surfaces.

We cannot directly compare our performance with what is
to our knowledge the best-performing approximate polyhedral
Hausdorff distance software [Tang et al., 2009], since our algo-
rithm requires no separate preprocessing to tessellate the sur-
face into polygons or for one-time BVH construction. Hence,
it can handle deformable models, unlike algorithms such as
[Guthe et al., 2005a] and [Tang et al., 2009]. However, we can
perform a rough comparison of performance on non-deforming
models computed to similar accuracy as reported in the latter
paper as follows.

Tang et al. [2009] computed results on a 2.6GHz Intel CPU
for tessellated models with absolute error bounds of 10−4 on
model sizes that appear to be about 0.4 or 0.5, for an error of

2www.cs.technion.ac.il/ irit
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Figure 16: Computation time for computing the Hausdorff distance between different surface pairs while interactively translating
them with keyboard inputs. The surfaces were initially far apart and were moved closer so that they overlapped; they then continued
to be moved until they are far apart again on the opposite side. The error bars in Figure (16(b)) correspond to the calculated bounds.

Hierarchy Green-Purple Red-Brown Yellow-Orange (Ducks) Yellow-Orange Deform

Level Avg Min Max Avg Min Max Avg Min Max Avg Min Max

5 13.43 7.82 22.85 12.40 9.13 22.81 26.29 15.40 57.89 40.95 36.01 55.13

6 17.86 10.66 38.21 20.03 13.27 44.39 39.39 19.82 93.77 41.07 32.78 73.91

7 27.34 16.41 60.41 37.21 23.10 75.82 72.51 27.17 227.02 79.01 49.71 159.73

8 55.33 29.34 114.21 72.47 37.19 154.22 176.14 45.73 671.69 106.48 55.18 352.41

Table 4: Total time taken in milli-seconds to compute the Hausdorff distance for the different pairs of surfaces.

Operation Overlapping Far

Evaluation, BVH 5.28 6.17

Min Max Distance Matrix 12.07 7.34

Culling Ranges Computation 73.23 27.44

Culling 51.82 23.79

Final Distance Computation 11.02 14.79

Total Time 175.85 96.02

Table 5: Breakdown of the timing in milli-seconds for different
stages of our algorithm using a 7-level hierarchy. The overlap-
ping surfaces are timed as shown in Figure (1(c)).

0.02–0.03% of model size. This is on top of tessellation error,
which probably contributed more to the overall error given how
many triangles were there in their input. The most challeng-
ing case they reported was for the Hausdorff distance between
16.7K and 69.7K triangle bunny models; this corresponds to
the number of triangles in tessellated surfaces computed be-
tween hierarchy levels 6&7 and 7&8 respectively in our sys-
tem. Positioning these surfaces with high overlap, their two-

sided Hausdorff distance computation took 948ms (not includ-
ing pre-processing time to construct the BVH). Our worst-case
timing computed at hierarchy level 7 was 227ms, including
BVH construction, for the one-sided Hausdorff distance for the
more severely overlapped Yellow-Orange DuckBody models
(Figure (1(c))).

8. Limitations and Future Work

Our implementation of the hierarchy traversal is not opti-
mized for performance. We have not compared the performance
of our hybrid CPU-GPU implementation with a pure GPU im-
plementation, which could avoid reading back the min-max dis-
tance matrix by using a segmented scan on the GPU.

Another limitation of our algorithm is that our error bounds
will be large when the NURBS surface has a very high cur-
vature. While it is true that higher curvature increases error,
our bottom-up BVH construction allows the use of the local
error derived at the finest level of detail throughout the hierar-
chy, and thus this effect is not very large in practice. For a top
down approach, this would have been a more significant limi-
tation. However, if the input parameterization is also very non-
uniform, combined with high local curvature, the error bounds
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will be very large. In such cases, the program could use the
error bounds to flag the result as potentially ambiguous.

One potential application of our interactive algorithm is to
geometric surface optimization problems. For example, if the
desired final surface shape is known and the effect of forces on
the input surface shape has been extensively modeled but not
in an invertible manner, the question is how to find the initial
surface shape that yields the final desired surface shape. For
this application, measuring shape similarity with our algorithm
rather than a Hausdorff distance algorithm that operates on tes-
sellated meshes is preferred since the surface to be optimized is
best represented using a high-level representation (such as con-
trol points in the case of NURBS) instead of a tessellated mesh.
This is because the latter has far more degrees of freedom than
optimal for the optimization. Our algorithm could efficiently
evaluate the Hausdorff distance between the dynamic surface
being optimized and the desired surface, with the Hausdorff dis-
tance functioning as the objective function to minimize. Finally,
for directing the optimization, our algorithm could find all the
surface locations within the error bounds where the “bounded”
Hausdorff distance may be attained (unlike Hausdorff distance
between meshes, which will typically only find a single loca-
tion), which should significantly accelerate convergence.

9. Conclusions

We have presented the first practical, fully implemented al-
gorithm to compute the Hausdorff distance from one NURBS
surface to another, within computed bounds. Because our algo-
rithm has no separate preprocessing, it can compute Hausdorff
distance between dynamically deforming surfaces. Our method
provides guaranteed bounds for the computations that can be
used to match user-defined tolerance values. The user can also
loosen the tolerance to increase interactivity or tighten it when
accuracy rather than performance is critical. Our implemen-
tation is fast enough to calculate the two-sided Hausdorff dis-
tance interactively for most practical cases. Our implementa-
tion is both more accurate and has better performance than pre-
vious algorithms for computing Hausdorff distances between
non-deforming, pre-tessellated models.
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Alt, H., Behrends, B., Blömer, J., 1995. Approximate matching of polygonal

shapes. Annals of Mathematics and Artificial Intelligence 13 (3-4), 251–
265.

Alt, H., Braß, P., Godau, M., Knauer, C., Wenk, C., 2003. Computing the
Hausdorff distance of geometric patterns and shapes. In: Aronov, B., Basu,
S., Pach, J., Sharir, M. (Eds.), Discrete and Computational Geometry. The
Goodman–Pollack Festschrift. Vol. 25 of Algorithms and Combinatorics.
Springer, pp. 65–76.

Alt, H., Scharf, L., 2004. Computing the Hausdorff distance between curved
objects. In: Proceedings of the 20th European Workshop on Computational
Geometry. pp. 233–236.

Alt, H., Scharf, L., 2008. Computing the Hausdorff distance between curved
objects. International Journal of Computational Geometry and Applications
18 (4), 307–320.

Atallah, M. J., 1983. A linear time algorithm for the Hausdorff distance between
convex polygons. Information Processing Letters 17 (4), 207–209.

Bai, Y.-B., Yong, J.-H., Liu, C.-Y., Liu, X.-M., Meng, Y., June 2011. Polyline
approach for approximating Hausdorff distance between planar free-form
curves. Computer Aided Design 43, 687–698.
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